Robust extraction of input function from H/sub 2//sup 15/O dynamic myocardial positron emission tomography using independent component analysis

Author(s):  
J.S. Lee ◽  
J.Y. Ahn ◽  
D.S. Lee ◽  
J. Han ◽  
M.J. Jang ◽  
...  
2014 ◽  
Vol 981 ◽  
pp. 340-343
Author(s):  
Qi Wei ◽  
Qi Liu

The incidental component in addition to the measured target signals is considered as noise of Positron Emission Tomography (PET) images. A novel method to denoise the PET images based on Empirical Mode Decomposition (EMD) and Independent Component Analysis (ICA) associated with Sparse Code Shrinkage (SCS) technique is proposed in this paper. EMD is executed to decompose a PET image into a number of Intrinsic Mode Functions (IMFs), which are used to reconstruct a new PET image after chosen by means of an inverse EMD procedure. By applying ICA to the new PET image, an orthogonal dataset can be obtained and the signal-noise separation can be realized. Then a clearer PET image can be reconstructed by SCS. The simulation results indicate that the proposed method is effective to denoise PET images.


1987 ◽  
Vol 7 (2) ◽  
pp. 214-229 ◽  
Author(s):  
K. Herholz ◽  
C. S. Patlak

An analytical method based on Taylor expansions was developed to analyze errors caused by tissue heterogeneity in dynamic positron emission tomography (PET) measurements. Some general rules concerning the effect of parameter variances and covariances were derived. The method was further applied to various compartmental models currently used for measurement of blood flow, capillary permeability, glucose metabolism, and tracer binding. Blood flow and capillary permeability are shown to be generally underestimated in heterogenous tissue, the underestimation being more severe for slowly decaying, constant or increasing input functions rather than for bolus input, and increasing with measurement time. Typical errors caused by the heterogeneity due to insufficient separation between gray and white matter by a PET scanner with full width at half-maximum (FWHM)= 5 to 10 mm resolution range between–0.9 and–6% in dynamic CBF measurements with intravenous (i. v.) bolus injection of 15O-water or inhalation of 18F-fluoromethane and total measurement times of6 or 10 min, respectively. Binding or metabolic rates determined with tracers that are essentially trapped in tissue (e.g., FDG for measurement of cerebral glucose metabolism) are only slightly overestimated (0.5–3.0%) at typical measurement times and are essentially independent of the shape of the input function. The error increases considerably if tracer accumulation is very slow, however, or if short measurement times [<5/(k2 + k3)] are used. Some rate constants are also subject to larger errors.


2015 ◽  
Vol 35 (11) ◽  
pp. 1703-1710 ◽  
Author(s):  
Julie B Andersen ◽  
William S Henning ◽  
Ulrich Lindberg ◽  
Claes N Ladefoged ◽  
Liselotte Højgaard ◽  
...  

Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic–ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous 15O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq 15O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% ( P < 0.0001) and −0.7% ( P = 0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% ( P = 0.001) and 24% ( P = 0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq 15O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion.


1985 ◽  
Vol 5 (1) ◽  
pp. 142-150 ◽  
Author(s):  
C. Clark ◽  
R. Carson ◽  
R. Kessler ◽  
R. Margolin ◽  
M. Buchsbaum ◽  
...  

This article describes a method for partitioning metabolic variability found in positron emission tomography/[18F]fluorodeoxyglucose studies. For the 15 subjects examined, 74.8% of the total metabolic variability could be ascribed to individual differences in global metabolic rate, whereas 15.8% of the total variability was consistent regional variation or pattern across subjects. Subsequently, the method of Q-component analysis is described for the identification of strong- and weak-pattern subjects. In addition, a standardization procedure that amplifies the observed pattern by removing systematic individual differences is described. Finally, the implications of these findings and methods for future and clinical studies are discussed.


Sign in / Sign up

Export Citation Format

Share Document