quantification method
Recently Published Documents


TOTAL DOCUMENTS

777
(FIVE YEARS 229)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 12 (2) ◽  
pp. 572
Author(s):  
Shengbo Shan ◽  
Yongdong Pan ◽  
Shengyu Xiao

Quantification of damage sizes in cylindrical structures such as pipes and rods is of paramount importance in various industries. This work proposes an efficient damage quantification method by using a dry-point-contact (DPC) transducer based on the non-dispersive torsional waves in the low-frequency range. Theoretical analyses are first carried out to investigate the torsional wave interaction with different sizes of defects in cylindrical structures. A damage quantification algorithm is designed based on the wave reflections from the defect and end. Capitalizing on multiple excitations at different frequencies, the proposed algorithm constructs a damage image that identifies the geometric parameters of the defects. Numerical simulations are conducted to validate the characteristics of the theoretically-predicted wave-damage interaction analyses as well as the feasibility of the designed damage quantification method. Using the DPC transducer, experiments are efficiently carried out with a simple physical system. The captured responses are first assessed to confirm the capability of the DPC transducer for generating and sensing torsional waves. The sizes of the defects in two representative steel rods are then quantified with the proposed method. Both numerical and experimental results demonstrate the efficacy of the proposed damage quantification method. The understandings of the wave-damage interaction and the concept of the damage quantification algorithm lay out the foundation for engineering applications.


2022 ◽  
Vol 165 ◽  
pp. 108629
Author(s):  
Vishal Patel ◽  
Jorge Navarro ◽  
William Windes ◽  
Pavel Tsvetkov

2022 ◽  
Vol 302 ◽  
pp. 114073
Author(s):  
Changhui Ma ◽  
Yaowen Xie ◽  
Hanming Duan ◽  
Xiaoyun Wang ◽  
Qiang Bie ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 103
Author(s):  
Xue Yang ◽  
Usha Rai ◽  
Jin-Yong Chung ◽  
Noriko Esumi

Oxidative stress of the retinal pigment epithelium (RPE) is a major risk factor for age-related macular degeneration (AMD). As a dry AMD model via oxidative stress, sodium iodate (NaIO3), which is primarily toxic to the RPE, has often been used at a high dose to cause RPE death for studying photoreceptor degeneration. Thus, characterization of RPE damage by a low dose of NaIO3 is still limited. To quantify RPE damage caused by NaIO3 in mice, we recently developed a morphometric method using RPE flat-mounts. Here, we report that NaIO3 has a narrow range of dose–effect correlation at 11–18 mg/kg body weight in male C57BL/6J mice. We evaluated the usefulness of our quantification method in two experimental settings. First, we tested the effect of NF-κB inhibition on NaIO3-induced RPE damage in male C57BL/6J mice. IKKβ inhibitor BAY 651942 suppressed upregulation of NF-κB targets and protected the RPE from oxidative stress. Second, we tested sex-specific differences in NaIO3-induced RPE damage in C57BL/6J mice using a low dose near the threshold. NaIO3 caused more severe RPE damage in female mice than in male mice. These results demonstrate the usefulness of the quantification method and the importance of fine-tuning of the NaIO3 dose. The results also show the therapeutic potential of IKKβ inhibition for oxidative stress-related RPE diseases, and reveal previously-unrecognized sex-specific differences in RPE susceptibility to oxidative stress.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jianyu Zhu ◽  
Leina Dou ◽  
Shibei Shao ◽  
Jiaqian Kou ◽  
Xuezhi Yu ◽  
...  

Mushrooms containing Amanita peptide toxins are the major cause of mushroom poisoning, and lead to approximately 90% of deaths. Phallotoxins are the fastest toxin causing poisoning among Amanita peptide toxins. Thus, it is imperative to construct a highly sensitive quantification method for the rapid diagnosis of mushroom poisoning. In this study, we established a highly sensitive and automated magnetic bead (MB)-based chemiluminescence immunoassay (CLIA) for the early, rapid diagnosis of mushroom poisoning. The limits of detection (LODs) for phallotoxins were 0.010 ng/ml in human serum and 0.009 ng/ml in human urine. Recoveries ranged from 81.6 to 95.6% with a coefficient of variation <12.9%. Analysis of Amanita phalloides samples by the automated MB-based CLIA was in accordance with that of HPLC-MS/MS. The advantages the MB-based CLIA, high sensitivity, repeatability, and stability, were due to the use of MBs as immune carriers, chemiluminescence as a detection signal, and an integrated device to automate the whole process. Therefore, the proposed automated MB-based CLIA is a promising option for the early and rapid clinical diagnosis of mushroom poisoning.


Pharmacia ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 933-939
Author(s):  
Oksana Strus ◽  
Mariana Fedorovska ◽  
Serhii Holota ◽  
Natalia Polovko

Methodological bases and uniform standardization criteria of humic compounds as substances for drug products have not been developed yet. This is due to the structural complexity of humic compounds, the variety of ways to extract them from natural objects, the impossibility of using many classical methods of analytical chemistry to identify and quantify humic substances (HS), the lack of standard samples. The identification of humic acids (HA) in the aqueous sapropel extract (ASE) is identified after extracting from ASE by alkaline hydrolysis by the quantification method. After further precipitation with a concentrated sulfuric acid solution characteristic dark brown color is appeared. It was carried out the HA extraction from the sample of ASE, the precipitation of HA, the oxidation of HA and Mohr’s salt titration in accordance with the methodology developed on the basis of SSTU 7083:2009. It was determined that the total mass fraction of HA in the ASE sample was 83.8 mg/g± 0.12%. The methods of identification and quantification of the total mass of HA in ASE have been developed and validated. The ASE has been standardized.


2021 ◽  
Vol 31 (12) ◽  
pp. 123122
Author(s):  
Feng An ◽  
Sen Wu ◽  
Xiangyun Gao ◽  
H. Eugene Stanley ◽  
Jianxi Gao

Sign in / Sign up

Export Citation Format

Share Document