Experimental Analysis of Performance and Thermal Capability of Three Phase Squirrel Cage Induction Motor Using Plastered Composite Conductors

2019 ◽  
Vol 4 (3) ◽  
pp. 201-205
Author(s):  
N. Balamurugan ◽  
S. Selvaperumal

Background: This article deals with the analysis on improved performance and efficiency of induction motor by using nano composites for stator winding. Methods: The nanocomposites are added with different enamel. Enamel is mostly preferred for induction motors’ winding, due to three main reasons: adhesion, infusion and plaster. To predetermine the plaster and nanocomposite conductor’s behavior when they are used for transmitting AC currents and developing AC magnetic field, a numerical analysis is performed. The total heat losses are determined by the heat run test. Open circuit and short circuit tests are used to analyze the performance and efficiency of the proposed induction motor. Results: The AC losses of composite and plaster conductors having good accord are compared with previous solid and hollow conductors. Analysis of the coil by a composite and plaster conductor shows that the AC losses in low current are lower than the coil, which is wrapped by a solid, and hallow conductors. Due to this reason, composite and plaster conductors are considered advantageous for low and medium power motors. Conclusion: Adding nano composites with the plaster material will help to improve electrical, thermal and mechanical characteristics. The property of enamel can change the lifetime of induction motor. The induction motor winding makes use of nano composites SiO2 and TiO2 with enamel coated.

Author(s):  
Karan S Belsare ◽  
Gajanan D Patil

A low cost and reliable protection scheme has been designed for a three phase induction motor against unbalance voltages, under voltage, over voltage, short circuit and overheating protection. Taking the cost factor into consideration the design has been proposed using microcontroller Atmega32, MOSFETs, relays, small CTs and PTs. However the sensitivity of the protection scheme has been not compromised. The design has been tested online in the laboratory for small motors and the same can be implemented for larger motors by replacing the i-v converters and relays of suitable ratings.


2014 ◽  
Vol 984-985 ◽  
pp. 970-976
Author(s):  
Memala W. Abitha ◽  
V. Rajini

The three phase induction motor is a popularly used machine in many of the industries, which is well known for its robustness, reliability, cost effectiveness, efficient and safe operation. The unnoticed manufacturing failure, mistakes during repair work, exceeding life time may be some of the causes of the induction motor failure, which may lead to the unknown shut down time of the industry. The condition monitoring plays important role as it has the influence on the production of materials and profit. In our work, the induction motor is modelled using stationary reference frame and analysed for single phasing stator fault. The techniques used in detecting the single phasing (open circuit) failures are Park’s vector approach and Fast Fourier Transform (FFT). Park’s vector approach is used for detecting the faults occurring at various phases and FFT is used for detecting the faults of the induction motor working under no load and varying loading conditions.


2020 ◽  
Vol 10 (21) ◽  
pp. 7572 ◽  
Author(s):  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anouar Belahcen ◽  
Ants Kallaste ◽  
Anton Rassõlkin ◽  
...  

This paper presents a hybrid finite element method (FEM)–analytical model of a three-phase squirrel cage induction motor solved using parallel processing for reducing the simulation time. The growing development in artificial intelligence (AI) techniques can lead towards more reliable diagnostic algorithms. The biggest challenge for AI techniques is that they need a big amount of data under various conditions to train them. These data are difficult to obtain from the industries because they contain low numbers of possible faulty cases, as well as from laboratories because a limited number of motors can be broken for testing purposes. The only feasible solution is mathematical models, which in the long run can become part of advanced diagnostic techniques. The benefits of analytical and FEM models for their speed and accuracy respectively can be exploited by making a hybrid model. Moreover, the concept of cloud computing can be utilized to reduce the simulation time of the FEM model. In this paper, a hybrid model being solved on multiple processors in a parallel fashion is presented. The results depict that by dividing the rotor steps among several processors working in parallel, the simulation time reduces considerably. The simulation results under healthy and broken rotor bar cases are compared with those taken from a laboratory setup for validation.


Sign in / Sign up

Export Citation Format

Share Document