parseval’s theorem
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
William D Mark

A mathematical model of static-transmission-error frequency-domain contributions caused by a single generic form of gear-tooth damage is used to explain observed behavior of the average-log-ratio (ALR) gear-damage detection algorithm applied to a case of tooth-bending-fatigue damage. The periodic behavior of rotational-harmonic frequency spectra resulting from tooth damage is explained and experimentally verified. Monotonic increases in ALR contributions in the rotational-harmonic region below the tooth-meshing fundamental harmonic are unambiguously related to increasing gear damage by use of Parseval’s theorem for the discrete Fourier transform. Computation of ALR using rotational-harmonic bands between adjacent tooth-meshing harmonics is suggested for early detection of gear damage. Large high-frequency ALR contributions are explained by transmission-error jump (step) discontinuities caused by large tooth-pair deformations, indicating a severe state of damage.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2071
Author(s):  
Xinhai Wang ◽  
Gong Zhang ◽  
Xiangmin Wang ◽  
Qingqing Song ◽  
Fangqing Wen

In this paper, a type of effective electronic counter-countermeasures (ECCM) technique for suppressing the high-power deception jamming using an orthogonal frequency division multiplexing (OFDM) radar is proposed. Concerning the velocity deception jamming, the initial phases of the pulses transmitted in a coherent processing interval (CPI) are designed to minimize the jamming power within a specific range, forming a notch around the jamming in the Doppler spectrum. For the purpose of suppressing the range deception jamming and the joint range-velocity deception jamming, the phase codes of the subcarriers belonging to the OFDM pulses are optimized to minimize the jamming power, distributing some specific bands in the range and the range-velocity domain, respectively. According to Parseval’s theorem, the phase encoding, acting as the coding manner of the OFDM subcarriers can ensure that the energy of each OFDM symbol stays the same. It is worth noticing that the phase codes of the OFDM subcarriers can influence the peak-to-average power ratio (PAPR). Thus, an optimization problem is formulated to optimize the phase codes of the subcarriers under the constraint of global PAPR, which can regulate the PAPRs of multiple OFDM symbols at the same time. The proposed problem is non-convex; therefore, it is a huge challenge to tackle. Then we present a method named by the phase-only alternating direction method multipliers (POADMM) to solve the aforementioned optimization problem. Some necessary simulation results are provided to demonstrate the effectiveness of the proposed radar signaling strategy


Author(s):  
A. Gutiérrez ◽  
E. Marcault ◽  
C. Alonso ◽  
J.-P. Laur ◽  
D. Trémouilles

2019 ◽  
Vol 9 (11) ◽  
pp. 2228 ◽  
Author(s):  
Shiue-Der Lu ◽  
Hong-Wei Sian ◽  
Meng-Hui Wang ◽  
Rui-Min Liao

The development of renewable energy and the increase of intermittent fluctuating loads have affected the power quality of power systems, and in the long run, damage the power equipment. In order to effectively analyze the quality of power signals, this paper proposes a method of signal feature capture and fault identification, as based on the extension neural network (ENN) algorithm combined with discrete wavelet transform (DWT) and Parseval’s theorem. First, the original power quality disturbance (PQD) transient signal was subjected to DWT, and its spectrum energy was calculated for each order of wavelet coefficients through Parseval’s theorem, in order to effectively intercept the eigenvalues of the original signal. Based on the features, the extension neural algorithm was used to establish a matter-element model of power quality disturbance identification. In addition, the correlation degree between the identification data and disturbance types was calculated to accurately identify the types of power failure. To verify the accuracy of the proposed method, five common power quality disturbances were analyzed, including voltage sag, voltage swell, power interruption, voltage flicker, and power harmonics. The results were then compared with those obtained from the back-propagation network (BPN), probabilistic neural network (PNN), extension method and a learning vector quantization network (LVQ). The results showed that the proposed method has shorter computation time (0.06 s), as well as higher identification accuracy at 99.62%, which is higher than the accuracy rates of the other four types.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 290 ◽  
Author(s):  
Chenhao Wu ◽  
Jiguang Yue ◽  
Li Wang ◽  
Feng Lyu

This paper proposes a detection and classification method of recessive weakness in Superbuck converter through wavelet packet decomposition (WPD) and principal component analysis (PCA) combined with probabilistic neural network (PNN). The Superbuck converter presents excellent performance in many applications and is also faced with today’s demands, such as higher reliability and steadier operation. In this paper, the detection and classification issue to recessive weakness is settled. Firstly, the performance of recessive weakness both in the time and frequency domain are demonstrated to clearly show the actual deterioration of the circuit system. The WPD and Parseval’s theorem are utilized in this paper to feature the extraction of recessive weakness. The energy discrepancy of the fault signals at different wavelet decomposition levels are then chosen as the feature vectors. PCA is also employed to the dimensionality reduction of feature vectors. Then, a probabilistic neural network is applied to automatically detect and classify the recessive weakness from different components on the basis of the extracted features. Finally, the classification accuracy of the proposed classification algorithm is verified and tested with experiments, which present satisfying classification accuracy.


2018 ◽  
Vol 38 (2) ◽  
pp. 42-51 ◽  
Author(s):  
José Antonio Hoyo-Montaño ◽  
Jesús Naim Leon-Ortega ◽  
Guillermo Valencia-Palomo ◽  
Rafael Armando Galaz-Bustamante ◽  
Daniel Fernando Espejel-Blanco ◽  
...  

This paper shows the development of a decision tree for the classification of loads in a non-intrusive load monitoring (NILM) system implemented in a simple board computer (Raspberry Pi 3). The decision tree uses the total energy value of the power signal of an equipment, which is generated using a discrete wavelet transform and Parseval’s theorem. The power consumption data of different types of equipment were obtained from a public access database for NILM applications. The best split point for the design of the decision tree was determined using the weighted average Gini index. The tree was validated using loads available in the same public access database.


2017 ◽  
Vol 14 (1) ◽  
pp. 411-420
Author(s):  
W Abitha Memala ◽  
V Rajini

Induction motor stator fault is diagnosed by applying Discrete Wavelet transform on zero sequence components. The single phasing stator fault is created and diagnosed in the induction motor model developed in stationary reference frame, under varying load conditions. The stator inter-turn incipient fault is created and diagnosed in the induction motor experimental setup as well under no load condition. The qdo components are calculated from Park’s equations. The faults can be diagnosed from wavelet transform of the zero sequence current components. PSD is used for diagnosing the fault and the statistical value is used for verifying the result. The energy is calculated using Parseval’s theorem. The energy and the statistical data calculated from the wavelet coefficients of zero sequence current components are used as fault indicators. The energy value is able to reveal the fault severity in the induction motor stator winding. Power spectral Density along with Discrete Wavelet Transform plays very important role in diagnosing the fault.


Sign in / Sign up

Export Citation Format

Share Document