ac losses
Recently Published Documents


TOTAL DOCUMENTS

857
(FIVE YEARS 96)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Pavol Kovac ◽  
Tibor Melisek ◽  
Ján Kováč ◽  
M. Búran ◽  
Imrich Husek ◽  
...  

Abstract MgB2 wires with 114, 192 and 342 filaments of size 14-19 µm manufactured by HyperTech Research, Inc. have been subjected to low temperature DC measurements. R(T), I-V characteristics, critical currents and stress and strain tolerances of these wires differing by filament architecture and filament size sheathed by resistive CuNi alloys were measured and compared with the literature data. It was found that these fine-filamentary wires have high engineering current densities not reduced by twisting up to 10 mm, sufficient strain tolerances and therefore are promising for future applications where minimised AC losses are required due resistive sheaths, thin MgB2 filaments and short twist pitches.


Author(s):  
Achille Angrisani Armenio ◽  
Alessandro Leveratto ◽  
Gianluca De Marzi ◽  
Andrea Traverso ◽  
Cristina Bernini ◽  
...  

Abstract One of the features unique in Bi-2212/Ag wires is the network of bridges between the filaments formed by grains grown through the Ag matrix during the partial-melt heat treatment process. Although these interconnections favor a redistribution of the current among the filaments allowing high critical current density, they represent a strong electrical coupling between the filaments themself. Such a coupling increases the AC losses, present also in case of charge and discharge of DC magnets, principal applications of this kind of superconductor. In this work, through transport and magnetic measurements and their comparison, we study the behavior of these bridges as a function of applied magnetic field and temperature and the implications they have on the electrical coupling. The experiment has been performed on two multifilamentary wires prepared by GDG-PIT process starting from two commercial Bi-2212 precursor powders: Nexans and Engi-Mat. The reported results provide information on the effective length scale on which the filaments are coupled as a function of the field and temperature and we believe that such findings can be useful in magnet design.


Author(s):  
Jianfeng Huang ◽  
Y. Ilyin ◽  
W.A.J. Wessel ◽  
Ruben Lubkemann ◽  
Erik Krooshoop ◽  
...  

Abstract The inter-strand contact resistance and AC losses were measured on an ITER PF Coil joint in a parallel applied AC magnetic field. In addition, the hysteresis loss was measured as a function of the angle with the applied magnetic field on a NbTi strand of the same type as in the joint with a Vibrating Sample Magnetometer (VSM). The AC loss measurements were performed at four applied field conditions for combinations of 0 or 1 T offset field and 0.2 or 0.4 T sinusoidal amplitude. The hysteresis loss of the joint was compared with the measured AC loss density of the NbTi strand for the same field conditions as the joint AC loss measurement but with varying the angle of the applied field. The subsequent cable twist angles affect the hysteresis loss since the critical current and penetration field depend on the angle of the applied field. It is found that 15.5° is an effective angle for the calculation of the hysteresis loss of joint when compared to the single strand measurement. The inter-strand contact resistance measurements cover all the typical strand combinations from the five cabling stages of the individual conductors, as well as the strand combinations across the two conductors to characterize the inter-strand including the copper sole resistivity. It’s the first time to measure the contact resistances and AC losses of the full-size ITER PF joint. By comparing the measured and simulated data in the JackPot-ACDC model, it’s also the first time to obtain the accurate inter-strand, inter-petal and strand to copper sole contact resistivities, which are the main input parameters for the further quantitative numerical analysis of the PF joints, in any current and magnetic field conditions.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8034
Author(s):  
Mingyu Choi ◽  
Gilsu Choi

Interior permanent magnet (IPM) machines with hairpin windings have attracted significant attention in EV applications owing to their low DC resistance and excellent thermal capabilities. In this paper, we present a comprehensive investigation of AC winding losses in IPM machines for traction applications, including analytical modeling, the influence of design parameters, and finite element (FE) verification. The proposed analytical model can predict the trends in AC winding losses for any number of bar conductors and slot/pole combinations. The results of the parametric study, obtained via the analytical model, are presented to examine the effects of key design parameters, such as conductor width and height, phase arrangement, and slot-per-pole-per-phase (SPP). To incorporate more practical issues into the analysis of IPM machines with hairpin windings, extensive FE simulations were conducted. The results indicated that the AC winding losses decrease with an increasing number of conductor layers and phases inside the slot.


Author(s):  
Mike D Sumption ◽  
John Murphy ◽  
Timothy J Haugan ◽  
Milan Majoros ◽  
Danko C van der Laan ◽  
...  

Abstract We have measured ReBCO coated conductor-based CORC® and Roebel cables at 77 K in a Spinning Magnet Calorimeter which subjected the tapes in the samples to a radial magnetic field of 566 mT (peak) at frequencies up to 120 Hz (272 T/s, cyclic average) with an approximately sinusoidal waveform. The samples were oriented such that the field applied to the tapes within the cables was entirely radial, simplifying subsequent analysis. An expression for loss which included hysteretic, flux creep, and eddy current losses was fit to both the CORC® and the Roebel cables. This expression allowed easy comparison of the relative influence of eddy currents and flux creep (or power-law behavior) effects. The loss of both the CORC® and Roebel cables measured here were seen to be essentially the sum of the hysteretic loss, flux creep effects, and the normal metal eddy current losses of the individual tapes. The losses of these cables were measured at high B*dB/dt with no coupling current loss observed under the present preparation conditions. The influence of flux creep effects on loss were not negligible. The losses of the CORC® cable per meter of tape were seen to be reduced from the case of a flat tape because of the helical geometry of the tapes.


Author(s):  
Vladimir L Sokolovsky ◽  
Leonid Prigozhin

Abstract Numerical simulation of superconducting devices is a powerful tool for understanding the principles of their work and improving their design. Usually, such simulations are based on a finite element method but, recently, a different approach, based on the spectral technique, has been presented for very efficient solution of several applied superconductivity problems described by one-dimensional integro-differential equations or a system of such equations. Here we propose a new pseudospectral method for two-dimensional magnetization and transport current superconducting strip problems with an arbitrary current-voltage relation, spatially inhomogeneous strips, and strips in a nonuniform applied field. The method is based on the bivariate expansions in Chebyshev polynomials and Hermite functions. It can be used for numerical modeling magnetic flux pumps of different types and investigating AC losses in coated conductors with local defects. Using a realistic two-dimensional version of the superconducting dynamo benchmark problem as an example, we showed that our new method is a competitive alternative to finite element methods.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6204
Author(s):  
Muhammad U. Fareed ◽  
Harold S. Ruiz

Improving our understanding of the physical coupling between type-II superconductors (SC) and soft ferromagnetic materials (SFM) is the root for progressing to the application of SC-SFM metastructures in scenarios such as magnetic cloaking, magnetic shielding, and power transmission systems. However, in the latter, some intriguing and yet unexplained phenomena occurred, such as a noticeable rise in the SC energy losses, and a local but not isotropic deformation of its magnetic flux density. These phenomena, which are in apparent contradiction with the most fundamental theory of electromagnetism for superconductivity, that is, the critical state theory (CST), have remained unexplained for about 20 years, given the acceptance of the controversial and yet paradigmatic existence of the so-called overcritical current densities. Therefore, aiming to resolve these long-standing problems, we extended the CST by incorporating a semi-analytical model for cylindrical monocore SC-SFM heterostructures, setting the standards for its validation with a variational approach of multipole functionals for the magnetic coupling between Sc and SFM materials. It is accompanied by a comprehensive numerical study for SFM sheaths of arbitrary dimensions and magnetic relative permeabilities μr, ranging from μr=5 (NiZn ferrites) to μr = 350,000 (pure Iron), showing how the AC-losses of the SC-SFM metastructure radically changes as a function of the SC and the SFM radius for μr≥100. Our numerical technique and simulations also revealed a good qualitative agreement with the magneto optical imaging observations that were questioning the CST validness, proving therefore that the reported phenomena for self-field SC-SFM heterostructures can be understood without including the ansatz of overcritical currents.


2021 ◽  
Author(s):  
Payam Shams Ghahfarokhi ◽  
Andrejs Podgornovs ◽  
Antonio J. Marques Cardoso ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Marco Pastura ◽  
Davide Barater ◽  
Stefano Nuzzo ◽  
Giovanni Franceschini
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document