The Design of Multichannel Marine Seismic Acquisition Unit Based on ADS1282

2014 ◽  
Vol 989-994 ◽  
pp. 3274-3277
Author(s):  
Zhi Li Zhang ◽  
Ying Zhang ◽  
Peng Chen

For marine seismic data acquisition needs,a multichannel marine seismic data acquisition unit was designed,which used the 32-bit analog-to-digital ADS1282 as a core and Field programmable gate array (FPGA) as the acquisition controller.The unit can achieve multichannel seismic data sampling and transmission functions.The design fully used with the design ADS1282 chip integration,with the corresponding anti-jamming measures,not only simplified the circuit design,but also ensured the quality of signal acquisition and system stability.the design used FPGA to realize a multichannel hydrophone signal synchronization sampling.

Geophysics ◽  
1985 ◽  
Vol 50 (2) ◽  
pp. 257-261 ◽  
Author(s):  
M. H. Safar

An important recent development in marine seismic data acquisition is the introduction of the Gemini technique (Newman, 1983, Haskey et al., 1983). The technique involves the use of a single Sodera water gun as a reference source together with the conventional air gun or water gun array which is fired a second or two after firing the reference source. The near‐field pressure signature radiated by the reference source is monitored continuously. The main advantage of the Gemini technique is that a shallow high;resolution section is recorded simultaneously with that obtained from the main array.


Geophysics ◽  
2021 ◽  
pp. 1-42
Author(s):  
Shaoping Lu

In marine seismic exploration, it has been well known that sea surface-related multiples can be treated as signals to image the subsurface and provide extended illumination. Previous studies on imaging of multiples have been mainly focusing on its algorithm development and implementation. This paper serves as a tutorial where we systematically investigate the fundamental challenges in the process of imaging of multiples. We first examine the impacts of marine seismic data acquisition parameters: such as offset, trace spacing and streamer towing direction, which are all key elements that control the quality of the images of multiples, and illustrate that 3D towed streamer and OBS surveys are preferable acquisition geometries to apply imaging of multiples. In addition, we investigate the challenges in jointly imaging primaries and multiples and the crosstalk problem in the process, and demonstrate that a Least-Squares inversion based algorithm is effective to address these issues. With the proper handling of all those challenges, imaging of multiples can help to mitigate shallow acquisition footprints, improve salt boundary illumination and enhance the imaging resolution, which allow the identification of drilling hazards and reduction in drilling risks. To apply imaging of multiples in practice, the objective is not to replace but to augment imaging of primaries by providing extra illumination.


Sign in / Sign up

Export Citation Format

Share Document