Error Estimates for the Finite Difference Solution of the Heat Conduction Equation: Consideration of Boundary Conditions and Heat Sources
This contribution investigates the numerical solution of the steady-state heat conduction equation. The finite difference method is applied to simple formulations of heat sources where still analytical solutions can be derived. Thus, the results of the numerical approach can be related to the exact solutions and conclusions on the accuracy obtained. In addition, the numerical implementation of different forms of boundary conditions, i.e. temperature and flux condition, is compared to the exact solution. It is found that the numerical implementation of coordinate dependent sources gives the exact result while temperature dependent sources are only approximately represented. Furthermore, the implementation of the mentioned boundary conditions gives the same results as the analytical reference solution.