Matrix Crack Detection of CFRP Laminates in Cryogenic Temperature Using Electrical Resistance Change Method

2006 ◽  
Vol 321-323 ◽  
pp. 873-876 ◽  
Author(s):  
Akira Todoroki ◽  
Kazuomi Omagari ◽  
Masahito Ueda

For a cryogenic fuel tank of a next generation rocket, a Carbon Fiber Reinforced Plastic (CFRP) laminated composite tank is one of the key technologies. For the fuel tank made from the laminated composites, matrix cracks are significant problems that cause leak of the fuel. In the present paper, electrical resistance change method is adopted to monitor the matrix cracking of the CFRP laminate. Previous studies show that tension load in fiber direction causes electrical resistance increase due to the piezoresistivity of the carbon fibers, and fiber breakages also cause the electrical resistance increase of the CFRP laminates. In order to distinguish the electrical resistance changes due to matrix cracking from those due to the piezoresistivity and the fiber breakages, residual electrical resistance change under the complete unloading condition is employed in the present study. Experimental investigations were performed using cross-ply laminates in cryogenic temperature. As a result, it can be revealed that the residual electrical resistance change is a useful indicator for matrix crack monitoring of the cross-ply CFRP laminates.

2012 ◽  
Vol 2012 (0) ◽  
pp. _PS31-1_-_PS31-3_
Author(s):  
Daichi HARUYAMA ◽  
Akira TODOROKI ◽  
Yoshihiro MIZUTANI ◽  
Yoshiro SUZUKI

2010 ◽  
Vol 1251 ◽  
Author(s):  
Yuta Saito ◽  
Yuji Sutou ◽  
Junichi Koike

AbstractThe electrical resistance change of amorphous SixTe100-x (x: 10-23) films during heating was investigated by a two-point probe method. The SixTe100-x films showed two-stage crystallization processes. The film was firstly crystallized to Te and subsequently crystallized to Si2Te3 with an electrical resistance drop. The first crystallization temperature Tx1st slightly increased with increasing Si content, while the second crystallization temperature Tx2nd was independent on the composition and was a constant temperature of 310 °C. In all films, the electrical resistance once increased in the temperature range from 250 to 295 °C before the crystallization of the Si2Te3. This temporal resistance increase could be explained by considering a formation of high-resistivity Si-rich amorphous phase.


Sign in / Sign up

Export Citation Format

Share Document