Image Processing for Optical Methods to Analyze Shape, Deformation, Stress and Strain

2006 ◽  
Vol 326-328 ◽  
pp. 13-18
Author(s):  
Yoshiharu Morimoto

The authors have been developing some novel methods to measure shape, deformation, stress and strain of structures using optical methods and image processing as follows: (1) Phase analysis methods using Fourier, wavelet or Gabor transforms, etc., (2) Real-time 2-D strain measurement using moiré interferometry, (3) Scanning moiré method using thinning-out of scanning lines and a DMD camera (4) Strain rate distribution measurement by a high-speed video camera, (5) Real-time integrated phase-shifting method, (6) Shape measurement methods using multi-reference planes, a linear image sensor, or a frequency modulated grating, and (7) Windowed phase-shifting digital holographic interferometry (WPSDHI). Theories of these methods and some applications are introduced. The most accurate result is 88 picometer standard deviation of errors using the WPSDHI.

2003 ◽  
Vol 74 (3) ◽  
pp. 1393-1396 ◽  
Author(s):  
Kentarou Nishikata ◽  
Yoshihide Kimura ◽  
Yoshizo Takai ◽  
Takashi Ikuta ◽  
Ryuichi Shimizu

2003 ◽  
Vol 35 (3) ◽  
pp. 282-286
Author(s):  
Kentarou Nishikata ◽  
Yusuke Shimazaki ◽  
Yoshihide Kimura ◽  
Yoshizo Takai ◽  
Takashi Ikuta ◽  
...  

2014 ◽  
Vol 971-973 ◽  
pp. 1454-1458
Author(s):  
Lei Qu ◽  
Yan Tian ◽  
Jun Liu

For real time target detection, identification and tracking in high frame rates, large field of view images, a real-time image processing system is designed. A TMS320C6678 DSP runs as the chief arithmetic processor of this system and FPGA as the secondary controller. C6678 is compared with the same series C6414 in image compression algorithm test. Experimental results show that the new system has a more effective construct, and higher reliability, and can provide a platform for the new high-speed image processing.


2012 ◽  
Vol 40 (12) ◽  
pp. 3485-3492 ◽  
Author(s):  
Márcio Portes de Albuquerque ◽  
Marcelo Portes de Albuquerque ◽  
Germano T. Chacon ◽  
E. L. de Faria ◽  
Andrea Murari

2013 ◽  
Vol 569-570 ◽  
pp. 932-939 ◽  
Author(s):  
David M.J. McCarthy ◽  
Jim H. Chandler ◽  
Alessandro Palmeri

Photogrammetric techniques have demonstrated their suitability for monitoring static structural tests. Advantages include scalability, reduced cost, and three dimensional monitoring of very high numbers of points without direct contact with the test element. Commercial measuring instruments now exist which use this approach. Dynamic testing is becoming a convenient approach for long-term structural health monitoring. If image based methods could be applied to the dynamic case, then the above advantages could prove beneficial. Past work has been successful where the vibration has either large amplitude or low frequency, as even specialist imaging sensors are limited by an inherent compromise between image resolution and imaging frequency. Judgement in sensor selection is therefore critical. Monitoring of structures in real-time is possible only at a reduced resolution, and although imaging and computer processing hardware continuously improves, so the accuracy demands of researchers and engineers increase. A new approach to measuring vibration is introduced here, whereby a long-exposure photograph is used to capture a blurred image of the vibrating structure. The high resolution blurred image showing the whole vibration interval is measured with no need for high-speed imaging. Results are presented for a series of small-scale laboratory models, as well as a larger scale test, which demonstrate the flexibility of the proposed technique. Different image processing strategies are presented and compared, as well as the effects of exposure, aperture and sensitivity selection. Image processing time appears much faster, increasing suitability for real-time monitoring.


Sign in / Sign up

Export Citation Format

Share Document