Design Models of Polymer Electrolyte Membrane Fuel Cell System

2010 ◽  
Vol 447-448 ◽  
pp. 554-558
Author(s):  
Mulyazmi ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

One important aspect to develop fuel cell design is to use the concept of computational models. Mathematical modeling can be used to help research complex, estimates the optimal performance of fuel cells stack, compare several different processes, save costs and time in the investigation. This paper focuses on several reviews of research models to develop the system design of the Proton Exchange Membrane Fuel Cell (PEMFC). Purposes of this study are to determine the factors that affect system performance include: stack of PEMFC system, water management system and Supply of reactants to the PEMFC stack.

2018 ◽  
Vol 7 (3.27) ◽  
pp. 80
Author(s):  
G Sheebha Jyothi ◽  
Y Bhaskar Rao

This paper represents a mathematical model for proton exchange membrane fuel cell(PEMFC)system. Proton exchange membrane fuel cell (also called polymer Electrolyte Membrane fuel cells(PEM)) provides a continuous electrical energy supply from fuel at high levels of efficiency and power density. PEMs provide a solid, corrosion free electrolyte, a low running temperature, and fast response to power.  


2015 ◽  
Vol 6 (3) ◽  
pp. 2050-2053 ◽  
Author(s):  
P. D. Tran ◽  
A. Morozan ◽  
S. Archambault ◽  
J. Heidkamp ◽  
P. Chenevier ◽  
...  

Bio-inspired chemistry allowed for the development of the first noble metal-free polymer electrolyte membrane hydrogen fuel cell (PEMFC). The device proved operational under technologically relevant conditions.


Author(s):  
Katharina Wagner ◽  
Karl Heinz Hoffmann

AbstractFuel cells are known for high efficiencies in converting chemical energy into electrical energy. Nonetheless, the processes taking place in a fuel cell still possess a number of irreversibilities that limit the power output to values below the reversible limit. To analyze these, we developed a model that captures the main irreversibilities occurring inside a proton exchange membrane or polymer electrolyte membrane fuel cell. We used the methods of endoreversible thermodynamics, which enable us to study the entropy production of the different sources of irreversibility in detail. Additionally, performance measures like efficiency and power output can be calculated with such a model, and the influence of different parameters, such as temperature and pressure, can be easily investigated. The comparison of the model predictions with realistic fuel cell data shows that the functional dependencies of the fuel cell characteristics can be captured quite well.


Author(s):  
S H Han ◽  
K R Kim ◽  
D K Ahn ◽  
Y D Choi

This study investigates the effects of stoichiometry, humidity, cell temperature, and pressure on the performance and the flooding of the proton exchange membrane fuel cell. Values of stoichiometry are 1.5, 2.0, and 2.5 at cell temperatures of 50, 55, and 60 °C, respectively. This study shows that the dimensionless flooding value (FV) is a function of the stoichiometry, humidity, temperature, and pressure. The FV is calculated by using the measured values of temperature, humidity, pressure, and flowrate of the cathode. The effect of the dimensionless number on the flooding of the cathode in the proton exchange membrane fuel cell is analysed in this study. The effects of air stoichiometry, cell temperature, and air humidity are also discussed in this article.


Energy ◽  
2020 ◽  
pp. 119362
Author(s):  
Seok-Ho Seo ◽  
Si-Doek Oh ◽  
Jinwon Park ◽  
Hwanyeong Oh ◽  
Yoon-Young Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document