Review on Serpentine Flow Field Design for PEM Fuel Cell System

2010 ◽  
Vol 447-448 ◽  
pp. 559-563 ◽  
Author(s):  
Misran Erni ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

Flow field design has several functions that should perform simultaneously. Therefore, specific plate materials and channel designs are needed to enhance the performance of proton exchange membrane (PEM) fuel cell. Serpentine flow field design is one of the most popular channel configurations for PEM fuel cell system. Some configurations have been developed to improve the cell performance. This paper presents a review on serpentine flow field (SFF) design and its influence to PEM fuel cell performance based on some indicators of performance. The comparisons of SFF with other flow field designs are summarized. The results of some experimental and numerical investigations are also presented.

AIChE Journal ◽  
2021 ◽  
Author(s):  
Yulin Wang ◽  
Xiaoai Wang ◽  
Gaojian Chen ◽  
Chao Chen ◽  
Xiaodong Wang ◽  
...  

2014 ◽  
Vol 804 ◽  
pp. 75-78 ◽  
Author(s):  
Vinh Nguyen Duy ◽  
Jung Koo Lee ◽  
Ki Won Park ◽  
Hyung Man Kim

Flow-field design affects directly to the PEM fuel cell performance. This study aims to stimulate the under-rib convection by adding sub-channels and by-passes to the conventional-advanced serpentine flow-field to improve the PEM fuel cell performance. The experimental results show that if reacting gases flow in the same direction as the neighboring main channels, the under-rib convection shows a flow from the main channels to the sub-channels makes progress in reducing pressure drop and enhancing uniform gas supply and water diffusion. Alternatively, if in the direction opposite to that of the neighboring main channels, the under-rib convection shows a flow from the inlet side towards the outlet side across the sub-channel as in the conventional serpentine channels. Analyses of the local transport phenomena in the cell suggest that the inlet by-pass supplies the reacting gases uniformly from the entrance into the sub-channels and the outlet by-pass enhances water removal. Novel serpentine flow-field pattern employing sub-channels and by-passes shows uniform current density and temperature distribution by uniformly supplying the reacting gas. Furthermore, performance improvement of around 20% is observed from the experimental performance evaluation. As a result, longer battery life is expected by reducing the mechanical stress of membrane electrode assembly.


Author(s):  
J. P. Owejan ◽  
T. A. Trabold ◽  
D. L. Jacobson ◽  
M. Arif ◽  
S. G. Kandlikar

Water is the main product of the electrochemical reaction in a proton exchange membrane (PEM) fuel cell. Where the water is produced over the active area of the cell, and how it accumulates within the flow fields and gas diffusion layers, strongly affects the performance of the device and influences operational considerations such as freeze and durability. In this work, the neutron radiography method was used to obtain two-dimensional distributions of liquid water in operating 50 cm2 fuel cells. Variations were made of flow field channel and diffusion media properties, to assess the effects on the overall volume and spatial distribution of accumulated water. Flow field channels with hydrophobic coating retain more water, but the distribution of a greater number of smaller slugs in the channel area improves fuel cell performance at high current density. Channels with triangular geometry retain less water than rectangular channels of the same cross-sectional area, and the water is mostly trapped in the two corners adjacent to the diffusion media. Also, it was found that cells constructed using diffusion media with lower in-plane gas permeability tended to retain less water. In some cases, large differences in fuel cell performance were observed with very small changes in accumulated water volume, suggesting that flooding within the electrode layer or at the electrode-diffusion media interface is the primary cause of the significant mass transport voltage loss.


Author(s):  
Venkateswarlu Velisala ◽  
Gandhi Pullagura ◽  
Naresh Yarramsetty ◽  
Srinivas Vadapalli ◽  
Murali Krishna Boni ◽  
...  

2018 ◽  
Vol 197 ◽  
pp. 08010 ◽  
Author(s):  
A'rasy Fahruddin ◽  
Djatmiko Ichsani ◽  
Fadlilatul Taufany

Baffles in the Polymer Electrolyte Membrane (PEM) fuel cell flow field increase the reactant pressure to gas diffusion layer, enhance reactant mass transfer to the catalyst layer and water discharge under the rib, which in turn improve cell performance. In this study, we perform numerical simulations to investigate triangular baffles configuration in triple serpentine flow fields and compare it with flow field without baffles on cell performance. A 9-layer PEM fuel cell model with 14 cm2 active area is used. Baffles are arranged in line with single row and two rows transversely to the flow direction. Different flowrate is applied for optimization. In addition, the use of reducers in exhaust is also studied. The results show that flow field with baffles configuration can improve power density by 8%, while current density increase 6% when compared to non-baffles flow field.


2019 ◽  
Vol 9 (22) ◽  
pp. 4863 ◽  
Author(s):  
Luo ◽  
Chen ◽  
Xia ◽  
Zhang ◽  
Yuan ◽  
...  

The cathode flow field design of a proton exchange membrane (PEM) fuel cell is essential to fuel cell performance, which directly affects the uniformity of reactant distribution and the ability to remove water. In this paper, the single serpentine flow field design on the cathode side is optimized to reach a high performance by controlling the rib groove rate (the ratio of the number of grooved ribs to the number of total ribs). The rib groove starts from the inlet side and then evenly distributes over the ribs. Four rib groove rates are selected in this study, namely, 0, 1/3, 2/3, and 1. A three-dimensional PEM fuel cell model is used to analyze the output performance of the fuel cell. The results indicate that the rib groove design has a significant effect on the distribution of oxygen at the cathode side, the density of the membrane current, the concentration of water vapor under the rib, and the fuel cell output performance. The output performance of the fuel cell improves with the increased rib groove rate. However, when the rib groove rate is greater than 2/3, its impact on the overall performance of the fuel cell begins to slow down. The PEM fuel cells exhibit the best output performance when the rib groove rate is 1.


Sign in / Sign up

Export Citation Format

Share Document