scholarly journals Improving PEM fuel cell performance using in-line triangular baffles in triple serpentine flow field

2018 ◽  
Vol 197 ◽  
pp. 08010 ◽  
Author(s):  
A'rasy Fahruddin ◽  
Djatmiko Ichsani ◽  
Fadlilatul Taufany

Baffles in the Polymer Electrolyte Membrane (PEM) fuel cell flow field increase the reactant pressure to gas diffusion layer, enhance reactant mass transfer to the catalyst layer and water discharge under the rib, which in turn improve cell performance. In this study, we perform numerical simulations to investigate triangular baffles configuration in triple serpentine flow fields and compare it with flow field without baffles on cell performance. A 9-layer PEM fuel cell model with 14 cm2 active area is used. Baffles are arranged in line with single row and two rows transversely to the flow direction. Different flowrate is applied for optimization. In addition, the use of reducers in exhaust is also studied. The results show that flow field with baffles configuration can improve power density by 8%, while current density increase 6% when compared to non-baffles flow field.

2014 ◽  
Vol 804 ◽  
pp. 75-78 ◽  
Author(s):  
Vinh Nguyen Duy ◽  
Jung Koo Lee ◽  
Ki Won Park ◽  
Hyung Man Kim

Flow-field design affects directly to the PEM fuel cell performance. This study aims to stimulate the under-rib convection by adding sub-channels and by-passes to the conventional-advanced serpentine flow-field to improve the PEM fuel cell performance. The experimental results show that if reacting gases flow in the same direction as the neighboring main channels, the under-rib convection shows a flow from the main channels to the sub-channels makes progress in reducing pressure drop and enhancing uniform gas supply and water diffusion. Alternatively, if in the direction opposite to that of the neighboring main channels, the under-rib convection shows a flow from the inlet side towards the outlet side across the sub-channel as in the conventional serpentine channels. Analyses of the local transport phenomena in the cell suggest that the inlet by-pass supplies the reacting gases uniformly from the entrance into the sub-channels and the outlet by-pass enhances water removal. Novel serpentine flow-field pattern employing sub-channels and by-passes shows uniform current density and temperature distribution by uniformly supplying the reacting gas. Furthermore, performance improvement of around 20% is observed from the experimental performance evaluation. As a result, longer battery life is expected by reducing the mechanical stress of membrane electrode assembly.


Author(s):  
J. P. Owejan ◽  
T. A. Trabold ◽  
D. L. Jacobson ◽  
M. Arif ◽  
S. G. Kandlikar

Water is the main product of the electrochemical reaction in a proton exchange membrane (PEM) fuel cell. Where the water is produced over the active area of the cell, and how it accumulates within the flow fields and gas diffusion layers, strongly affects the performance of the device and influences operational considerations such as freeze and durability. In this work, the neutron radiography method was used to obtain two-dimensional distributions of liquid water in operating 50 cm2 fuel cells. Variations were made of flow field channel and diffusion media properties, to assess the effects on the overall volume and spatial distribution of accumulated water. Flow field channels with hydrophobic coating retain more water, but the distribution of a greater number of smaller slugs in the channel area improves fuel cell performance at high current density. Channels with triangular geometry retain less water than rectangular channels of the same cross-sectional area, and the water is mostly trapped in the two corners adjacent to the diffusion media. Also, it was found that cells constructed using diffusion media with lower in-plane gas permeability tended to retain less water. In some cases, large differences in fuel cell performance were observed with very small changes in accumulated water volume, suggesting that flooding within the electrode layer or at the electrode-diffusion media interface is the primary cause of the significant mass transport voltage loss.


2010 ◽  
Vol 447-448 ◽  
pp. 559-563 ◽  
Author(s):  
Misran Erni ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

Flow field design has several functions that should perform simultaneously. Therefore, specific plate materials and channel designs are needed to enhance the performance of proton exchange membrane (PEM) fuel cell. Serpentine flow field design is one of the most popular channel configurations for PEM fuel cell system. Some configurations have been developed to improve the cell performance. This paper presents a review on serpentine flow field (SFF) design and its influence to PEM fuel cell performance based on some indicators of performance. The comparisons of SFF with other flow field designs are summarized. The results of some experimental and numerical investigations are also presented.


Author(s):  
Venkateswarlu Velisala ◽  
Gandhi Pullagura ◽  
Naresh Yarramsetty ◽  
Srinivas Vadapalli ◽  
Murali Krishna Boni ◽  
...  

2016 ◽  
Vol 41 (4) ◽  
pp. 3023-3037 ◽  
Author(s):  
M. Rahimi-Esbo ◽  
A.A. Ranjbar ◽  
A. Ramiar ◽  
E. Alizadeh ◽  
M. Aghaee

2016 ◽  
Vol 853 ◽  
pp. 410-415 ◽  
Author(s):  
Xiang Shen ◽  
Jin Zhu Tan ◽  
Yun Li

A proton exchange membrane (PEM) fuel cell is an electrochemical device that directly converts chemical energy of hydrogen into electric energy.The structure of the flow channel is critical to the PEM fuel cell performance. In this paper, the effect of the cathode flow channel baffles on PEM fuel cell performance was investigated numerically. A three-dimensional model was established for the PEM fuel cell which consisted of bipolar plates with three serpentine flow channels, gas diffusion layers, catalyst layers and PEM. Baffles were added in the cathode flow channels to study the effect of the cathode flow channel baffle on the PEM fuel cell performance. And then, numerical simulation for the PEM fuel cell with various cathode channel baffle heights ranging from 0.2 mm to 0.6 mm was conducted.The simulated results show that there existed an optimal cathode flow channel baffle height in terms of the electrochemical performance as all other parameters of the PEM fuel cell were kept constant. It is found that the PEM fuel cell had the good electrochemical performance as the flow channel baffle heights was 0.4mm in this work.


Author(s):  
Isaac Perez-Raya ◽  
Abel Hernandez-Guerrero ◽  
Daniel Juarez-Robles ◽  
M. Ernesto Gutierrez-Rivera ◽  
J. C. Rubio-Arana

This work presents the results of a study of a new radial configuration proposed for the gas flow field for a PEM fuel cell. The objective of this study is to understand the effects of this configuration on the fuel cell performance. The results are compared with the radial designs proposed in previous analysis. The proposed designs on this work show an improvement on the cell performance, with a better use of the reaction area compared with a flow free radial design. The results also show that the effect of channeling the flow inside these radial configurations helps to improve the fuel cell performance.


Author(s):  
Fang-Bor Weng ◽  
Ay Su ◽  
Kai-Fan Lo ◽  
Cheng-Hsin Tu

A novel bio-cell flow field pattern is experimentally investigated by determining fuel cell performance and optimal operating conditions. The cell performance is analyzed by the polarization curve and the long-term stability. The bio-cell flow channel structure has a main feed track, a secondary branch track, and repeats to promote water removal from gas diffusion layer. The performance of the bio-cell flow field pattern is optimal performance when the cell is operated with low humidity gases and low cell temperature. In addition, the bio-cell flow field exhibits stable performance for non-humidified air. The fuel cell with the novel bio-cell flow field has advantages for low relative humidity operations. The results of the bio-cell flow field could potentially simplify fuel cell system design without humidifiers.


Sign in / Sign up

Export Citation Format

Share Document