Numerical Stress Analysis of Epoxy Adhesively Bonded Dissimilar Joint

2013 ◽  
Vol 594-595 ◽  
pp. 930-934
Author(s):  
Nur Athirah ◽  
A.R. Abdullah ◽  
M. Afendi ◽  
M.S. Abdul Majid ◽  
Ruslizam Daud ◽  
...  

A two-dimensional adhesively bonded dissimilar single lap joint model was analyzed under tension. An explicit closed-form solution was formulated by using MATLAB tool for analysis of shear and peel stresses distribution along the bondline under effect of variation of overlap length, adherend thickness ratio and adherend Youngs modulus ratio. The solution was formulated based on analysis of Bo Zhao et al. [2]. The bending moment at the edge joint of the Bo Zhaos solution was replaced by the bending moment at the edge joint that have been proposed by X. Zhao et al. [5] to compare the accuracy of solutions. The least stress intensities in dissimilar joint could be achieved with a suitable ratio of thickness and Youngs modulus of adherends.

1990 ◽  
Vol 112 (3) ◽  
pp. 251-255 ◽  
Author(s):  
I. Finnie ◽  
M. Shirmohamadi

A closed-form solution is derived for the creep deflection in thick-walled piping subjected to combined internal pressure and bending moment. The solution is limited to the situation usually encountered in practice with sustained gravity loads and support forces in which the additional stresses due to bending are small compared to those due to internal pressure. For this case, it is shown that a simple correction factor may be applied to an elastic computation of pipe deflections to include the effect of creep. Predictions using this factor show satisfactory agreement with observations on a thick-walled piping system which had been in service for 20 years.


1989 ◽  
Vol 111 (3) ◽  
pp. 243-247 ◽  
Author(s):  
O. Rand

The paper presents a closed-form analytical solution for the source strength distribution along the circumference of a two-dimensional circular cylinder that is required for producing an arbitrary distribution of normal velocity. Being suitable to be used with flows having arbitrary vorticity distribution, the present formulation can be considered as an alternative and extensive form of the circle theorems. Using the conformal transformation technique, the formulation also serves as a closed-form solution of Laplace’s equation in any two-dimensional flow domain that is reducible to the outer or inner region of a circular cylinder having arbitrary prescribed normal velocity over its boundary.


Sign in / Sign up

Export Citation Format

Share Document