Evaluation of Annealing Effects on TiO2 Nanorod Arrays for Dye-Sensitized Solar Cells by Equivalent Circuit Analysis

2014 ◽  
Vol 609-610 ◽  
pp. 152-158 ◽  
Author(s):  
Mei Rong Sui ◽  
Xiu Quan Gu

TiO2 nanorod arrays (NRA) were synthesized via a facile hydrothermal method for preparing the dye-sensitized solar cells (DSSC). It was found that a post-thermal treatment facilitated enhancing the cell efficiency. The cells containing NRs underwent 500 °C annealing exhibited much higher efficiency than those un-sintered ones. Further, the internal resistance analysis was carried out to reveal the mechanism underlying the DSSC performance improvement. Specifically, the equivalent circuit model was employed to derivate the internal resistances, which was consistent with the experimental results. It was found that the sintered cells exhibited a higher series resistance and a lower shunt resistance than the un-sintered ones, suggesting the higher photocurrent density might result from the larger amount of dye loading.

2011 ◽  
Vol 1327 ◽  
Author(s):  
Liyuan Han ◽  
Ashraful Islam

ABSTRACTThe present paper discusses the principle of dye-sensitized solar cells (DSCs) in terms of equivalent circuit model and the key issues to improve the device efficiency. Equivalent circuit model is proposed following analysis by electrochemical impedance spectroscopy of the voltage dependence of the internal resistance elements of DSCs. The influence of these elements upon cell performance in areas such as short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) was examined based on the equivalent circuit. Efficient sensitization of nanocrystalline TiO2 film was observed across the whole visible range and into the near-IR region as far as 1000 nm with a new panchromatic substituted β-diketonato Ru(II)-terpyridine dye (HIG1). Introduction of bulky alkyl substituent group in a β-diketonato Ru(II)-terpyridine dye (A3) suppress aggregate formation result in an improved performance of DSCs and the performance is independent of the additive added during the dye adsorption process. The haze factor of TiO2 electrodes is a useful index when fabricating light-confined TiO2 electrodes to improve Jsc. It was demonstrated that blocking of bare TiO2 surface with small molecules is an effective way of suppress interfacial charge recombination at the TiO2-dye/electrolyte interface and of improving shunt resistance and Voc. FF was also improved by reduction of the internal series resistance, which is composed of the following three elements: the redox reaction resistance at the platinum counter electrode, the resistance of carrier transport by ions in the electrolyte, and resistance due to the sheet resistance of the transparent conducting oxide. Finally, the highest efficiency scores of 10.4% and 11.1% (aperture illumination area 1.004cm2 and 0.219cm2, respectively) were confirmed by a public test center.


RSC Advances ◽  
2016 ◽  
Vol 6 (13) ◽  
pp. 10450-10455 ◽  
Author(s):  
Zhixin Jin ◽  
Yinglin Wang ◽  
Shixin Chen ◽  
Gang Li ◽  
Lingling Wang ◽  
...  

A convenient method to control the morphology of TiO2 NRs and the performance of DSSCs via seed layers is presented.


2016 ◽  
Vol 680 ◽  
pp. 278-281 ◽  
Author(s):  
Fen Li ◽  
Su Juan Hu ◽  
Li Dong Wei ◽  
Bo Chi ◽  
Jian Li

In this work, vertically aligned TiO2 nanorod arrays (NR) are synthesized directly on FTO coated glass substrate by hydrothermal method. The samples are characterized by XRD, SEM, TEM and the results indicate that the 1-D nanorods are of single crystal rutile structure with growth direction along the [001] direction. The morphology (diameter, thickness and density) of the nanorods can be adjusted by changing the precursor amounts. The possible growth mechanism of TiO2 nanorods on FTO substrate has also been briefly discussed in this work. For dye-sensitized solar cells (DSSCs) fabricated of different thickness nanorods, a power conversion efficiency (PCE) of 1.74% has been achieved by using ~3μm nanorod arrays under simulated AM 1.5 illumination (100 mW cm-2). It is expected that the 1-D nanorods can be composited with other nanomaterial of different structures and morphologies to enhance the efficiency of DSSCs.


Sign in / Sign up

Export Citation Format

Share Document