Blind Source Separation for Under-Determined Mixtures Based on Time-Frequency Analysis

2016 ◽  
Vol 693 ◽  
pp. 1350-1356 ◽  
Author(s):  
Hong Kun Li ◽  
Hong Yi Liu ◽  
Chang Bo He

Blind source separation (BSS) is an effective method for the fault diagnosis and classification of mixture signals with multiple vibration sources. The traditional BSS algorithm is applicable to the number of observed signals is no less to the source signals. But BSS performance is limit for the under-determined condition that the number of observed signals is less than source signals. In this research, we provide an under-determined BSS method based on the advantage of time-frequency analysis and empirical mode decomposition (EMD). It is suitable for weak feature extraction and pattern recognition. Firstly, vibration signal is decomposed by using EMD. The number of source signals are estimated and the optimal observed signals are selected according to the EMD. Then, the vibration signal and the optimal observed signals are used to construct the multi-channel observed signals. In the end, BSS based on time-frequency analysis are used to the constructed signals. Gearbox signals are used to verify the effectiveness of this method.

2014 ◽  
Vol 945-949 ◽  
pp. 1054-1062 ◽  
Author(s):  
Zhi Nong Li ◽  
Fen Zhang ◽  
Xu Ping He ◽  
Yao Xian Xiao

Blind source separation provides a new method for the separation of mechanical sources under high level background noise, as well as the diagnosis of the compound fault. At present, the blind source separation has been successfully applied to the mecanical fault diagnosis. But the traditional mechanical source separation methods are restricted to non-gauss, stationary and mutually independent source signals. However, the mechanical fault signals do not suffice to these conditions, and generally exhibit non-stationarity and non-independence. For the non-stationary signal, its spectral feature is time-varying. Thus only the time-domain or frequency-domain analysis is not sufficient to describe the characteristics of non-stationary signal. The time-frequency analysis, which can provide the information about that the spectrum of the signal varies with the time, is a useful tool for non-stationary signal analysis. In this paper, combined time-frequency analysis with blind source separation, a blind source separation method for the non-stationary signal of the mechanical equipment based on time-frequency analysis is proposed and studied. The simulation and experimental results show that the proposed approach is feasible and effective.


2009 ◽  
Vol 88 (3) ◽  
pp. 425-456 ◽  
Author(s):  
Ryuichi Ashino ◽  
Takeshi Mandai ◽  
Akira Morimoto ◽  
Fumio Sasaki

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chen-yang Ma ◽  
Li Wu ◽  
Miao Sun ◽  
Qing Yuan

The traditional empirical mode decomposition method cannot accurately extract the time-frequency characteristic parameters contained in the noisy seismic monitoring signals. In this paper, the time-frequency analysis model of CEEMD-MPE-HT is established by introducing the multiscale permutation entropy (MPE), combining with the optimized empirical mode decomposition (CEEMD) and Hilbert transform (HT). The accuracy of the model is verified by the simulation signal mixed with noise. Based on the project of Loushan two-to-four in situ expansion tunnel, a CEEMD-MPE-HT model is used to extract and analyze the time-frequency characteristic parameters of blasting seismic signals. The results show that the energy of the seismic wave signal is mainly concentrated in the frequency band above 100 Hz, while the natural vibration frequency of the adjacent existing tunnel is far less than this frequency band, and the excavation blasting of the tunnel will not cause the resonance of the adjacent existing tunnel.


Author(s):  
Xiaotong Tu ◽  
Yue Hu ◽  
Fucai Li

Vibration monitoring is an effective method for mechanical fault diagnosis. Wind turbines usually operated under varying-speed condition. Time-frequency analysis (TFA) is a reliable technique to handle such kind of nonstationary signal. In this paper, a new scheme, called current-aided TFA, is proposed to diagnose the planetary gearbox. This new technique acquires necessary information required by TFA from a current signal. The current signal is firstly used to estimate the rotating speed of the shaft. These parameters are applied to the demodulation transform to obtain a rough time-frequency distribution (TFD). Finally, the synchrosqueezing method further enhances the concentration of the obtained TFD. The validation and application of the proposed method are presented by a simulated signal and a vibration signal captured from a test rig.


Sign in / Sign up

Export Citation Format

Share Document