diagnosis and classification
Recently Published Documents


TOTAL DOCUMENTS

1104
(FIVE YEARS 260)

H-INDEX

76
(FIVE YEARS 8)

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Adel A. Bahaddad ◽  
Mahmoud Ragab ◽  
Ehab Bahaudien Ashary ◽  
Eied M. Khalil

Parkinson's disease (PD) affects the movement of people, including the differences in writing skill, speech, tremor, and stiffness in muscles. It is significant to detect the PD at the initial stages so that the person can live a peaceful life for a longer time period. The serious levels of PD are highly risky as the patients get progressive stiffness, which results in the inability of standing or walking. Earlier studies have focused on the detection of PD effectively using voice and speech exams and writing exams. In this aspect, this study presents an improved sailfish optimization algorithm with deep learning (ISFO-DL) model for PD diagnosis and classification. The presented ISFO-DL technique uses the ISFO algorithm and DL model to determine PD and thereby enhances the survival rate of the person. The presented ISFO is a metaheuristic algorithm, which is inspired by a group of hunting sailfish to determine the optimum solution to the problem. Primarily, the ISFO algorithm is applied to derive an optimal subset of features with a fitness function of maximum classification accuracy. At the same time, the rat swarm optimizer (RSO) with the bidirectional gated recurrent unit (BiGRU) is employed as a classifier to determine the existence of PD. The performance validation of the IFSO-DL model takes place using a benchmark Parkinson’s dataset, and the results are inspected under several dimensions. The experimental results highlighted the enhanced classification performance of the ISFO-DL technique, and therefore, the proposed model can be employed for the earlier identification of PD.


Angiology ◽  
2022 ◽  
pp. 000331972110622
Author(s):  
Fabien Lareyre ◽  
Cong Duy Lê ◽  
Ali Ballaith ◽  
Cédric Adam ◽  
Marion Carrier ◽  
...  

Research output related to artificial intelligence (AI) in vascular diseases has been poorly investigated. The aim of this study was to evaluate scientific publications on AI in non-cardiac vascular diseases. A systematic literature search was conducted using the PubMed database and a combination of keywords and focused on three main vascular diseases (carotid, aortic and peripheral artery diseases). Original articles written in English and published between January 1995 and December 2020 were included. Data extracted included the date of publication, the journal, the identity, number, affiliated country of authors, the topics of research, and the fields of AI. Among 171 articles included, the three most productive countries were USA, China, and United Kingdom. The fields developed within AI included: machine learning (n = 90; 45.0%), vision (n = 45; 22.5%), robotics (n = 42; 21.0%), expert system (n = 15; 7.5%), and natural language processing (n = 8; 4.0%). The applications were mainly new tools for: the treatment (n = 52; 29.1%), prognosis (n = 45; 25.1%), the diagnosis and classification of vascular diseases (n = 38; 21.2%), and imaging segmentation (n = 38; 21.2%). By identifying the main techniques and applications, this study also pointed to the current limitations and may help to better foresee future applications for clinical practice.


2022 ◽  
Author(s):  
Charles Potter

This chapter provides a model for classification of dyslexia, dysgraphia and dyscalculia through analysis of the response of children to treatment. The model is discussed with reference to the types of multivariate treatment applied in a particular programme which works interactively online using an electronic data-base for linking functional difficulties in learning to treatment, and through this to firm diagnosis and classification. In applying the model, initial diagnosis of learning disabilities is treated as provisional, based on functional indicators as well as test data. Firm classification becomes possible through longitudinal assessment, analysis of response to multivariate intervention as well as response to specific programmes. Diagnosis can then be linked both to concessions as well as ongoing treatment.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8453
Author(s):  
Rafia Nishat Toma ◽  
Farzin Piltan ◽  
Jong-Myon Kim

Fault diagnosis and classification for machines are integral to condition monitoring in the industrial sector. However, in recent times, as sensor technology and artificial intelligence have developed, data-driven fault diagnosis and classification have been more widely investigated. The data-driven approach requires good-quality features to attain good fault classification accuracy, yet domain expertise and a fair amount of labeled data are important for better features. This paper proposes a deep auto-encoder (DAE) and convolutional neural network (CNN)-based bearing fault classification model using motor current signals of an induction motor (IM). Motor current signals can be easily and non-invasively collected from the motor. However, the current signal collected from industrial sources is highly contaminated with noise; feature calculation thus becomes very challenging. The DAE is utilized for estimating the nonlinear function of the system with the normal state data, and later, the residual signal is obtained. The subsequent CNN model then successfully classified the types of faults from the residual signals. Our proposed semi-supervised approach achieved very high classification accuracy (more than 99%). The inclusion of DAE was found to not only improve the accuracy significantly but also to be potentially useful when the amount of labeled data is small. The experimental outcomes are compared with some existing works on the same dataset, and the performance of this proposed combined approach is found to be comparable with them. In terms of the classification accuracy and other evaluation parameters, the overall method can be considered as an effective approach for bearing fault classification using the motor current signal.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhigang Shi ◽  
Yunlong Zhao ◽  
Zhanshuang Liu ◽  
Yanan Zhang ◽  
Le Ma

Substation equipment is not only the main part of the power grid but also the essential part to ensure the development of the national economy and People's Daily life of one of the important infrastructure. How to ensure its normal operation and find the sudden failure has become a hot issue to be solved urgently. For thermal fault diagnosis needs to classify and identify different power equipment first, this paper designed an SVM infrared image classifier, which can effectively identify three types of common power equipment. The classifier extracts HOG features from the infrared images of power equipment processed by the above segmentation and combines them with SVM multiclassification to achieve the purpose of improving the recognition accuracy. The experiment uses the classifier to identify three kinds of equipment, and the results show that the comprehensive recognition accuracy of the classifier is more than 95.3%, which is better than the traditional classification method and meets the demand for classification accuracy. In this paper, the traditional method of relative temperature difference is improved by using the temperature data of the infrared image, which can automatically judge the thermal failure level of electric power equipment. Experiments show that the diagnosis system designed in this paper can classify faults and give treatment suggestions while judging whether there are thermal faults for three types of power equipment, which verifies the feasibility and effectiveness of the substation infrared diagnosis technology designed in this paper.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1824
Author(s):  
Alvaro Morcuende ◽  
Francisco Navarrete ◽  
Elena Nieto ◽  
Jorge Manzanares ◽  
Teresa Femenía

Substance use disorders are a group of diseases that are associated with social, professional, and family impairment and that represent a high socio-economic impact on the health systems of countries around the world. These disorders present a very complex diagnosis and treatment regimen due to the lack of suitable biomarkers supporting the correct diagnosis and classification and the difficulty of selecting effective therapies. Over the last few years, several studies have pointed out that these addictive disorders are associated with systemic and central nervous system inflammation, which could play a relevant role in the onset and progression of these diseases. Therefore, identifying different immune system components as biomarkers of such addictive disorders could be a crucial step to promote appropriate diagnosis and treatment. Thus, this work aims to provide an overview of the immune system alterations that may be biomarkers of various addictive disorders.


2021 ◽  
Author(s):  
Ganfei Xu ◽  
Weiyi Huang ◽  
Shaoqian Du ◽  
Minjing Huang ◽  
Jiacheng Lyu ◽  
...  

There is a lack of comprehensive understanding of breast cancer (BC) specific sEVs characteristics and composition on BC unique proteomic information from human samples. Here, we interrogated the proteomic landscape of sEVs in 167 serum samples from patients with BC, benign mammary disease (BD) and from healthy donors (HD). The analysis provides a comprehensive landscape of serum sEVs with totally 9,589 proteins identified, considerably expanding the panel of sEVs markers. Of note, serum BC-sEVs protein signatures were distinct from those of BD and HD, representing stage- and molecular subtype-specific patterns. We constructed specific sEVs protein identifiers that could serve as a liquid biopsy tool for diagnosis and classification of BC from benign mammary disease, molecular subtypes, as well as assessment of lymph node metastasis. We also identified 11 potential survival biomarkers for distant metastasis. This work may provide reference value for the accurate diagnosis and monitoring of BC progression using serum sEVs.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7833
Author(s):  
Tiago Drummond Lopes ◽  
Adroaldo Raizer ◽  
Wilson Valente Júnior

Induction motors play a key role in the industrial sector. Thus, the correct diagnosis and classification of faults on these machines are important, even in the initial stages of evolution. Such analysis allows for increased productivity, avoids unexpected process interruptions, and prevents damage to machines. Usually, fault diagnosis is carried out by analyzing the characteristic effects caused by the faults. Thus, it is necessary to know and understand the behavior during the operation of the faulty machine. In general, monitoring these characteristics is complex, as it is necessary to acquire signals from the same motor with and without failures for comparison purposes. Whether in an industrial environment or in laboratories, the experimental characterization of failures can become unfeasible for several reasons. Thus, computer simulation of faulty motors digital twins can be an important alternative for failure analysis, especially in large motors. From this perspective, this paper presents and discusses several limitations found in the technical literature that can be minimized with the implementation of digital twins. In addition, a 3D finite element model of an induction motor with broken rotor bars is demonstrated, and motor current signature analysis is used to verify the fault effects. Results are analyzed in the time and frequency domain. Additionally, an artificial neural network of the multilayer perceptron type is used to classify the failure of broken bars in the 3D model rotor.


Sign in / Sign up

Export Citation Format

Share Document