Numerical Biaxial Tensile Test of Aluminum Alloy Sheets Using Crystal Plasticity Model Implemented in Commercial FEM Software

2016 ◽  
Vol 725 ◽  
pp. 255-260
Author(s):  
Shohei Ochiai ◽  
Akinori Yamanaka ◽  
Toshihiko Kuwabara

To improve the accuracy of forming simulations for sheet metal, the use of material models calibrated by multiaxial material tests is essential. Adequate material models can be calibrated on the basis of the contours of equal plastic work obtained by multiaxial material tests. However, because the tests often require special experimental equipment, they are not widely used by the industry. This paper proposes a methodology for a numerical biaxial tensile test that uses ABAQUS, a popular commercial software package for finite element analysis. In numerical tests, an open-source user-defined material model (UMAT) is used to implement crystal plasticity models. In order to validate our methodology, we performed a numerical biaxial tensile test on a 6000-series aluminum alloy sheet, and the results were compared with those of biaxial tensile tests with a cruciform specimen. The results demonstrated that the proposed numerical biaxial tensile test provides a reasonable prediction of stress-strain curves and the contours of equal plastic work.

2018 ◽  
Vol 920 ◽  
pp. 187-192
Author(s):  
Akinori Yamanaka ◽  
Natsuki Nemoto ◽  
Toshihiko Kuwabara

This paper presents the results of the numerical multi-axial material tests for predicting elastoplastic deformation behavior of aluminum alloy sheets under equi-biaxial tension and in-plane tension-compression stress states. In this study, we have performed the numerical biaxial tensile and tension-compression tests of a 5000-series aluminum alloy sheet using the crystal plasticity finite element method based on the mathematical homogenization method which has been developed by the previous studies. We found that the true stress-logarithmic plastic strain (SS) curves calculated by the numerical biaxial tensile test slightly deviate from those measured by the biaxial tensile tests using a cruciform specimen. On the other hand, the results of the numerical tension-compression test demonstrated that the predicted SS curves shows a reasonable agreement with those obtained by the experiment using the biaxial stress-testing machine with comb-shaped dies.


2013 ◽  
Vol 23 (3) ◽  
pp. 1107-1113 ◽  
Author(s):  
Lin Hua ◽  
Fanzhi Meng ◽  
Yanli Song ◽  
Jianing Liu ◽  
Xunpeng Qin ◽  
...  

Author(s):  
Luis Fernando Puente Medellín ◽  
Víctor Alfonso Ramírez Elías ◽  
Antonio de Jesús Balvantín García ◽  
Perla Iris Vázquez Gómez ◽  
José Angel Diosdado De la Peña

Sign in / Sign up

Export Citation Format

Share Document