Applicability Evaluation of SS (Structural Stress) Method on Actual Project

2008 ◽  
Vol 580-582 ◽  
pp. 633-636 ◽  
Author(s):  
Kwang Seok Kim ◽  
Joong Kyoo Kang ◽  
Joo Ho Heo ◽  
Sung Geun Lee

The structural stress (SS) method developed by BATTELLE has been studied based on small or mid-size scale specimens. In order to apply the new method, such as SS, on an actual project, it should have application results on actual project. However, SS method didn’t have a lot of application data compared to class procedure using hot spot stress (HSS). In order to find out whether the SS method, for the evaluation of fatigue life, can give reasonable results when it is applied under the same loading suggested by classification societies, it was compared with fatigue lives derived by class. ABS & DNV’s simplified fatigue analysis method were adopted to check the validity of SS method. Before applying complicated loading of class, static loading case was applied, since the class method has their own correlation factor for wave loading. And then, simplified fatigue analysis was performed with more complicated loading cases. From the results of fatigue life calculation, it can be said that SS shows reasonable fatigue lives with respect to HSS or notch stress based fatigue lives.

Author(s):  
Kwang-Seok Kim ◽  
Joong-Kyoo Kang ◽  
Joo-Ho Heo ◽  
Sung-Geun Lee

The structural stress (SS) method developed by BATTELLE has been studied based on small or mid size scale specimens. In order to apply new method on actual project, the new method such as SS should have application results on actual project. However, SS method didn’t have a lot of application data compared to class procedure using hot spot stress (HSS). In order to find that the SS method for the evaluation of fatigue life can give reasonable results when it is applied under the same loading suggested by classification societies, fatigue lives derived by class and SS method were compared. ABS & DNV’s simplified fatigue analysis method were adopted to check the validity of SS method. Before applying complicated loading of class, static loading case was applied since the class method has their own correlation factor for wave loading. And then simplified fatigue analysis was performed with more complicated loading cases. From the results of fatigue life calculation, it can be said that SS shows reasonable fatigue lives with respect to HSS or notch stress based fatigue lives.


Author(s):  
Martin Muscat ◽  
Kevin Degiorgio ◽  
James Wood

Fatigue cracks in welds often occur at the toe of a weld where stresses are difficult to calculate at the design stage. To circumvent this problem the ASME Boiler and PV code Section VIII Division 2 Part 5 [1] uses the structural stress normal to the expected crack to predict fatigue life using elastic analysis and as welded fatigue curves. The European Unfired Pressure Vessel Code [2] uses a similar approach. The structural stress excludes the notch stress at the weld toe itself. The predicted fatigue life has a strong dependency on the calculated value of structural stress. This emphasizes the importance of having a unique and robust way of extracting the structural stress from elastic finite element results. Different methods are available for the computation of the structural hotspot stress at welded joints. These are based on the extrapolation of surface stresses close to the weld toe, on the linearisation of stresses in the through-thickness direction or on the equilibrium of nodal forces. This paper takes a critical view on the various methods and investigates the effects of the mesh quality on the value of the structural stress. T-shaped welded plates under bending are considered as a means for illustration.


Author(s):  
Shrikarpagam Dhandapani

Fatigue occurs in structures due to the stresses from cyclic environmental loads. Offshore environmental loads being highly cyclic and recurring in nature, fatigue analysis with high degree of accuracy is required for reliable and optimized design of offshore structures. The main aim of this paper is to automate the process of identification of fatigue critical tubular joints of an offshore jacket structure using deterministic fatigue analysis with emphasis on the Hot Spot Stress Range (HSSR), an important measure in estimating fatigue damage, calculated using three different approaches for each tubular joint. The first approach determines HSSR at the time of maximum base shear of the jacket, the second, by calculating the difference between maximum and minimum Hot Spot Stress (HSS) and the third, at all time-instants of the wave cycle. Thus fatigue damage and fatigue life of the tubular joints are estimated using the highest HSSR value and the joints with lower fatigue life are identified as fatigue sensitive joints. This ensures effective identification of critical tubular joints of the offshore jacket structure which needs detailed investigation or redesign for fatigue. The deterministic approach discussed in this paper is applicable to large jackets which contains more number of tubular joints where sophisticated fatigue assessment at the preliminary stage is computationally intensive and manual identification of fatigue critical joints is laborious.


Author(s):  
Till Köder ◽  
Berend Bohlmann

Experimental fatigue analysis of a fillet-welded cover plate detail (‘floating frame’) of small and light craft was carried out at Kiel University of Applied Sciences. The structural detail is an intersection of longitudinal deck stiffener and transverse web frame with a plate thickness of 3.5mm and a doubling length of 100mm. Manual gas metal arc welding was used for the production of the 46mm long transverse fillet welds. The load-controlled constant amplitude fatigue tests at stress ratio R = 0 were supported by 3D finite-element analysis based on laser scans of the weld seams. Structural hot-spot stress, stress linearisation and Xiao and Yamada’s 1mm geometrical stress approaches were applied to the specimens as well as the notch stress concept with reference radii rref = 0.05mm and 1.00mm.


Author(s):  
Brian E. Healy

A case study comparison of the surface extrapolation and Battelle structural stress methodologies has been performed on a side shell connection detail typical of a representative FPSO or tanker vessel. Computations of hot spot stress via either method are consistent with current recommended practice. Convergence analysis to determine the hot spot stresses that best serve as fatigue parameters and a fatigue comparison that employs hot spot stresses from the convergence analysis have been executed at various locations around the detail. Results are reported and discussed.


Author(s):  
Yordan Garbatov

Purpose Fatigue strength and reliability assessment of complex double hull oil tanker structures, based on different local structural finite element approaches, is performed accounting for the uncertainties originating from load, nominal stresses, hot spot stress calculations, weld quality estimations and misalignments and fatigue S-N parameters including the correlation between load cases and the coating life and corrosion degradation. Design/methodology/approach Ship hull wave-induced vertical and horizontal bending moments and pressure are considered in the analysis. Stress analyses are performed based on the nominal, local hot spot and notch stress approaches. A linear elastic finite element analysis is used to determine the stress distribution around the welded details and to estimate structural stresses of all critical locations. Fatigue damage is estimated by employing the Palmgren-Miner approach. The importance of the contribution of each random variable to the uncertainty of the fatigue limit state function is also estimated. The probability of fatigue damage of hot spots is evaluated taking into account random coating life and corrosion wastage. Fatigue reliability, during the service life, is modelled as a system of correlated events. Findings The fatigue analysis showed that the fatigue damage at the hotspot, located at the flange of the stiffener close to the cut-out, is always highest in the cases of the structural hot spot stress and effective notch stress approaches, except for the one of the nominal stress approach. The sensitivities of the fatigue limit state function with respect to changes in the random variables were demonstrated showing that the uncertainty in the fatigue stress estimation and fatigue damage are the most important. Fatigue reliability, modelled as a parallel system of structural hot spots and as a serial system of correlated events (load cases) was evaluated based on the Ditlevsen bounds. As a result of the performed analysis, reliability and Beta reliability indexes of lower and upper bounds were estimated, which are very similar to the ones adopted for ultimate strength collapse as reported in literature. Originality/value This paper develops a very complex fatigue strength and reliability assessment model for analysing a double hull oil tanker structure using different local structural finite element approaches accounting for the associated uncertainties and the correlation between load cases and the coating life and corrosion degradation. The developed model is flexible enough to be applied for analysing different structural failure modes.


Author(s):  
Pingsha Dong ◽  
Jeong K. Hong

A series of well-known tubular joints tested in UKSORP II have been re-evaluated using the mesh-insensitive structural stress method as a part of the on-going Battelle Structural Stress JIP efforts. In this report, the structural stress based analysis procedure is first presented for applications in tubular joints varying from simple T joints, double T Joints, YT joints with overlap, and K joints with various internal stiffening configurations. The structural stress based SCFs are then compared with those obtained using traditional surface extrapolation based hot spot stress methods. Their abilities in effectively correlating the fatigue data collected from these tubular joints are demonstrated. These tests are also compared with the T curve typically used for fatigue design of tubular joints as well as the structural stress based master S-N curve adopted by ASME Section VIII Div 2. Finally, some of the implications on fracture mechanics based remaining life assessment for tubular joints are discussed in light of the results obtained in this investigation.


2006 ◽  
Vol 129 (3) ◽  
pp. 355-362 ◽  
Author(s):  
Pingsha Dong ◽  
Jeong K. Hong ◽  
Abílio M. P. De Jesus

In support of the ASME Div 2 Rewrite, a master S-N curve approach has been developed using a mesh-insensitive structural stress procedure for fatigue evaluation of welded components. The effectiveness of the master S-N curve approach has been demonstrated in a number of earlier publications for many joint types and loading conditions for pipe and vessel components as well as plate joints. To further validate the structural stress method, a series of recent test data (small weld details and a full-scale vessel) published by De Jesus et al. (2004, Fatigue and Fracture of Engineering Materials and Structures, 27, pp. 799–810) were analyzed in this paper. A comparative assessment of various existing procedures and their effectiveness in correlating the fatigue test data by De Jesus is also presented. These assessment procedures include current ASME Sec. VIII Div 2, weld classification approach in PD 5500, and the surface extrapolation-based hot spot stress approach in recently approved European EN 13445 Standards.


Sign in / Sign up

Export Citation Format

Share Document