Constitutive Inequalities for the Damage of Elastic-Brittle Materials

2011 ◽  
Vol 675-677 ◽  
pp. 891-899
Author(s):  
Qi Chang He ◽  
J.Z. Zhou

Starting from the requirement that the principle of determinism be satisfied, two constitutive inequalities are derived for one-dimensional strain- and stress-based continuum damage models. The one-dimensional constitutive inequality corresponding to the strain-based formulation turns out to be much less restrictive than the one associated to the stress-based formulation and is extended to the three-dimensional case. This extension gives a general constitutive inequality for the damage of elastic-brittle materials.

1997 ◽  
Vol 07 (07) ◽  
pp. 1451-1496 ◽  
Author(s):  
André Barbé

This paper considers three-dimensional coarse-graining invariant orbits for two-dimensional linear cellular automata over a finite field, as a nontrivial extension of the two-dimensional coarse-graining invariant orbits for one-dimensional CA that were studied in an earlier paper. These orbits can be found by solving a particular kind of recursive equations (renormalizing equations with rescaling term). The solution starts from some seed that has to be determined first. In contrast with the one-dimensional case, the seed has infinite support in most cases. The way for solving these equations is discussed by means of some examples. Three categories of problems (and solutions) can be distinguished (as opposed to only one in the one-dimensional case). Finally, the morphology of a few coarse-graining invariant orbits is discussed: Complex order (of quasiperiodic type) seems to emerge from random seeds as well as from seeds of simple order (for example, constant or periodic seeds).


2007 ◽  
Vol 17 (04) ◽  
pp. 1265-1303 ◽  
Author(s):  
A. BARBÉ ◽  
F. VON HAESELER

This paper considers higher-dimensional generalizations of the classical one-dimensional two-automatic Thue–Morse sequence on ℕ. This is done by taking the same automaton-structure as in the one-dimensional case, but using binary number systems in ℤm instead of in ℕ. It is shown that the corresponding ±1-valued Thue–Morse sequences are either periodic or have a singular continuous spectrum, dependent on the binary number system. Specific results are given for dimensions up to six, with extensive illustrations for the one-, two- and three-dimensional case.


2017 ◽  
Vol 27 (7) ◽  
pp. 1020-1057 ◽  
Author(s):  
George Z Voyiadjis ◽  
Peter I Kattan

The decomposition of the healing variable (in the case of scalars) and the healing tensor (in the case of tensors) is carried out systematically and consistently. In this respect, the classical linear healing model is adopted in this work. The decomposition of healings includes the healing variable/tensor of cracks and the healing variable/tensor for voids. A third defect type is considered wherever mathematically possible. Thus a complete treatment of the decomposition of the healing tensor is presented covering both the one-dimensional and three-dimensional aspects. As an illustrative example, the case of plane stress, plane damage, and plane healing is solved. In this case, it is concluded that two distinct decomposition equations are obtained as well as one single coupling formula. The coupling equation is an expression that relates the various healing tensor components and damage tensor components for cracks and voids Furthermore; it is shown that there is no coupling in the one-dimensional case.


1977 ◽  
Vol 17 (2) ◽  
pp. 153-170 ◽  
Author(s):  
J. Gibbons ◽  
S. G. Thornhill ◽  
M. J. Wardrop ◽  
D. Ter Haar

We find a Lagrangian density from which the equations of motion for the Lang-muir solitons follow in the usual way. We show how this Lagrangian leads to the usual conservation laws. For the one-dimensional case we discuss how a consideration of these conservation laws can help us to understand some of the results obtained in numerical experiments on the behaviour of a strongly turbulent plasma. We point out that the situation in the three-dimensional case may be fundamentally different, and we discuss near-sonic perturbations and Karpman's treatment of these.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1016
Author(s):  
Camelia Liliana Moldovan ◽  
Radu Păltănea

The paper presents a multidimensional generalization of the Schoenberg operators of higher order. The new operators are powerful tools that can be used for approximation processes in many fields of applied sciences. The construction of these operators uses a symmetry regarding the domain of definition. The degree of approximation by sequences of such operators is given in terms of the first and the second order moduli of continuity. Extending certain results obtained by Marsden in the one-dimensional case, the property of preservation of monotonicity and convexity is proved.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Raffaela Capitanelli ◽  
Maria Agostina Vivaldi

AbstractIn this paper, we study asymptotic behavior of solutions to obstacle problems for p-Laplacians as {p\to\infty}. For the one-dimensional case and for the radial case, we give an explicit expression of the limit. In the n-dimensional case, we provide sufficient conditions to assure the uniform convergence of the whole family of the solutions of obstacle problems either for data f that change sign in Ω or for data f (that do not change sign in Ω) possibly vanishing in a set of positive measure.


Sign in / Sign up

Export Citation Format

Share Document