Predicting Internal Oxidation: Building on the Wagner Model

2011 ◽  
Vol 696 ◽  
pp. 1-11 ◽  
Author(s):  
David J. Young

Wagner’s 1959 diffusion model of the internal oxidation process provided a method of predicting the rate at which a binary alloy was penetrated by dissolved oxygen as it precipitated the more reactive (but dilute) alloy component. Parabolic kinetics were predicted to depend on oxygen permeability in the unreacted alloy solvent and also, in cases where the reactive component was sufficiently mobile, the diffusion coefficient of the latter. The model has proven very successful, but is restricted to single oxidant-binary alloy systems, in which the precipitated oxide has extremely low solubility. This paper reviews recent results on a number of internal precipitation processes which cannot be described with the Wagner theory. These include formation of low stability carbides and nitrades; internal precipitation driven by multiple oxidants; the templating effects of prior precipitates on subsequently formed corrosion products; cellular precipitation morphologies; internal interface diffusion effects; volume changes in the reaction zone and the effects upon them of simultaneous external scaling.

2010 ◽  
Vol 654-656 ◽  
pp. 1948-1951 ◽  
Author(s):  
Thomas Gheno ◽  
Huan Li ◽  
Jian Qiang Zhang ◽  
David J. Young

Iron and model alloys containing 2.25, 9, and 20 wt% Cr, 2, 4 and 6 wt% Al, 1, 2 and 3 wt% Si, and dilute Fe-Si-Al ternaries were reacted in dry and wet Ar-CO2 gases at 800°C. External oxide scales grew on Fe according to fast, linear kinetics in dry CO2. Additions of H2O accelerated the reaction until steady-state parabolic kinetics were achieved. High Cr content alloys developed slow-growing chromium-rich oxide scales. Dry CO2 mixtures produced faster rates than wet gas mixtures. Lower Cr alloys developed thicker iron oxide scales, featuring cavities, cracks and poor adherence, and sustained internal oxidation. The presence of H2O led to even higher oxidation rates. Aluminium additions to iron of up to 4 wt% provided no protection, but instead caused internal oxidation. A level of 6 wt% significantly slowed oxidation by forming a continuous Al2O3 layer. Silicon additions had little effect, apart from promoting internal oxidation. However, simultaneous alloying with aluminium and silicon strongly depressed corrosion rates. The effectiveness of different alloy additions is discussed, along with the effects of water vapour and carbon activities, in the context of oxyfuel combustion technology.


2016 ◽  
Vol 2 (2) ◽  
pp. 91-95
Author(s):  
Neelima Rani T ◽  
Pavani A ◽  
Sobhita Rani P ◽  
Srilakshmi N

This study aims to formulate solid dispersions (SDs) of Simvastatin (SIM) to improve the aqueous solubility, dissolution rate and to facilitate faster onset of action. Simvastatin is a BCS class II drug having low solubility & therefore low oral bioavailability. In the present study, SDs of simvastatin different drug-carrier ratios were prepared by kneading method. The results showed that simvastatin solubility & dissolution rate enhanced with polymer SSG in the ratio 1:7 due to increase in wetting property or possibly may be due to change in crystallinity of the drug.


Sign in / Sign up

Export Citation Format

Share Document