oxide phase
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 81)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 105 (1) ◽  
pp. 199-207
Author(s):  
Yurii V. Shmatok ◽  
Vitalii A. Sirosh ◽  
Nataliya I. Globa

The paper presents the results of the investigations of structural, morphological and electrochemical characteristics of Na x MnO2 (x = 0.44, 0.67 and 0.8) .It is shown that the crystal structure of the resulting materials is determined by the sodium content and is tunnel in a case of Na0.44MnO2 and layered in a case of Na0.67MnO2 and Na0.8MnO2. In addition, the materials obtained are characterized by different morphology. The initial discharge capacity of the materials obtained increases with the increase of sodium content in oxide phase and is 117, 139 and 151 mAh/g for Na0.44MnO2, Na0.67MnO2 and Na0.8MnO2, respectively, however, at the same time the stability of the specific capacity decreases. Using Na0.44MnO2 as an example, the effect of the electrolyte composition, in particular the presence of FEC, on its electrochemical characteristics is shown.


2021 ◽  
Vol 64 (10) ◽  
pp. 761-767
Author(s):  
N. Kosdauletov ◽  
E. K. Mukhambetgaliev ◽  
V. E. Roshchin

The possibility of joint selective solid-phase reduction of iron and phosphorus in ferromanganese ore has been experimentally confirmed. The experiments were carried out in a Tamman laboratory furnace at a temperature of 1000 °C and holding for two and five hours. The article presents results of the study of phase composition and phases' quantitative ratio of the reduction products, as well as chemical composition of the phases. It was established that reduction roasting in CO atmosphere provides a transition from oxide phase to metal phase only of iron and phosphorus. At the same time, the concentration of manganese oxide MnO increases in the ore oxide phase. The use of solid carbon as a reducing agent under the same conditions leads to transition to the metallic phase together with iron and phosphorus of a part of manganese. Based on the obtained data, it is proposed to selectively reduce iron and phosphorus at a temperature of 1000 °C with a reducing gas. Gas reduction will make it possible to use existing gas furnaces, in particular, multi-pod furnaces, for metallization of iron and phosphorus in ferromanganese ore, and natural gas, including hydrogen -enriched gas, and even pure hydrogen, as a reducing agent and energy carrier. Due to this, at the stage of ore metallization in production of manganese alloys, greenhouse gas CO2 emissions can be reduced. The results of the work can be used in the development of theoretical and technological bases for processing ferromanganese ores with a high content of phosphorus, which are not processed by existing technologies.


2021 ◽  
pp. 70-96
Author(s):  
Roberto LÓPEZ ◽  
◽  
Jesús NAMIGTLE ◽  
Jorge MASTACHE

In this work, the study of the structural characterization of copper oxide by the X-ray diffraction technique is presented. To obtain layers of copper oxide, sputtering and thermal oxidation techniques were combined. The average crystal size was calculated for the sputtered copper samples. For the copper oxide films obtained by thermal oxidation, both the crystal size and the texture coefficient were calculated. The crystalline quality was poor for layers obtained by sputtering. Thermal oxidation carried out on these films transformed its structure to the copper oxide phase known as cupric oxide.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1256
Author(s):  
Wanchai Deeloed ◽  
Yuranan Hanlumyuang ◽  
Wanwisa Limphirat ◽  
Songwut Suramitr ◽  
Kantapat Chansaenpak ◽  
...  

In-situ investigations of structural transitions during the thermal-oxidative event of mixed-metal spinel oxide precursors, the so-called nickel- (NCO) and zinc-containing (ZCO) cobaltite spinel precursors, were investigated to understand the formations of the derived NiCo2O4 and ZnCo2O4 spinel oxides, respectively. In-situ XRD investigation revealed that emerged temperatures for spinel oxide phase were between 325 and 400 °C, depending on the cationic substituent. It indicated that the emerged temperature correlated with the absolute octahedral site preference energy (OSPE) of those cations that participated in the development of the spinel framework. Moreover, the incorporated nickel and zinc in the precursors was beneficial for inhibiting the occurrence of the undesired CoO phase. Time-resolved X-ray absorption spectroscopic (TRXAS) data suggested the local structure rearrangement of nickel and zinc throughout the calcination process, which differed from the behavior of single-metal cobalt system. The essential information reported herein provides a benefit to control the cationic distribution within spinel materials, leading to the tunable physical and chemical properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agnes Krettek ◽  
Thilo Rennert

AbstractPodzols are characterised by mobilisation of metals, particularly Al and Fe, and dissolved organic matter (DOM) in topsoil horizons, and by immobilisation in subsoil horizons. We mimicked element mobilisation during early podzolisation by irrigating the AE horizon of a Dystric Arenosol with acetic acid at different flow velocities and applying flow interruptions to study rate-limited release in experiments with soil cylinders. We used eluates in batch experiments with goethite and Al-saturated montmorillonite to investigate DOM reactivity towards minerals. Both the flow velocity and flow interruptions affected element release, pointing to chemical non-equilibrium of release and to particles, containing Fe and OM mobilised at larger flow velocity, characteristic of heavy rain or snowmelt. Based on chemical extractions, the source of mobilised Al and Fe, the vast majority of which was complexed by DOM, was no oxide phase, but rather organic. Rate limitation also affected the composition of DOM released. Carboxyl and phenolic species were the most important species adsorbed by both minerals. However, DOM composition affected the extent of DOM adsorption on goethite more distinctly than that on montmorillonite. Our findings evidence that the intensity of soil percolation affects quantitative and qualitative element release during early podzolisation and adsorptive DOM retention in subsoil horizons.


2021 ◽  
Vol 14 (4) ◽  
pp. 287-299

Abstract: In this work, we demonstrate the feasibility of preparing a commercially important type of magnetic oxide, BaM (BaFe12O19) hexaferrite, using scrap iron filings as an iron source. The hexaferrites were prepared by conventional solid state reaction and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and magnetization measurements. XRD patterns of samples prepared by mixing powders extracted from the iron filings with appropriate amounts of barium carbonate and sintering at 1200 °C revealed the presence of a major BaM hexaferrite with small amounts of nonmagnetic α-Fe2O3 oxide phase. On the other hand, SEM images of the samples showed clear crystallization of perfect hexagonal platelets of BaM hexaferrite, which was further confirmed by the Curie temperature determined from the thermomagnetic measurements. The saturation magnetization of the samples was in the range of 45.1– 52.1 emu/g and the remnant magnetization in the range of 14.8 – 19.0 emu/g. These values and the moderate coercivity of ~ 1 kOe suggest that the prepared samples could potentially be useful for high-density magnetic recording. Keywords: Hexaferrite, Solid waste, Magnetic Properties, Structural properties, Magnetic recording.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1491
Author(s):  
Siziwe S. Gqoba ◽  
Rafael Rodrigues ◽  
Sharon Lerato Mphahlele ◽  
Zakhele Ndala ◽  
Mildred Airo ◽  
...  

A one-step colloidal synthesis of hierarchical nanoflowers of WS2 is reported. The nanoflowers were used to fabricate a chemical sensor for the detection of ammonia vapors at room temperature. The gas sensing performance of the WS2 nanoflowers was measured using an in-house custom-made gas chamber. SEM analysis revealed that the nanoflowers were made up of petals and that the nanoflowers self-assembled to form hierarchical structures. Meanwhile, TEM showed the exposed edges of the petals that make up the nanoflower. A band gap of 1.98 eV confirmed a transition from indirect-to-direct band gap as well as a reduction in the number of layers of the WS2 nanoflowers. The formation of WS2 was confirmed by XPS and XRD with traces of the oxide phase, WO3. XPS analysis also confirmed the successful capping of the nanoflowers. The WS2 nanoflowers exhibited a good response and selectivity for ammonia.


2021 ◽  
Vol 410 ◽  
pp. 293-298
Author(s):  
Anatolij A. Babenko ◽  
Ruslan R. Shartdinov ◽  
Alena G. Upolovnikova

The use of fluorspar in modern metallurgical slags, incl. slags of the argon-oxygen decarburization (AOD) process, as a fluxing agent, is associated with many disadvantages. Those disadvantages can be solved by using boron oxide as an alternative, which also provides conditions for direct microalloying of steel with boron. The paper presents the results of thermodynamic modeling of the effect of basicity and boron oxide content in slags of the CaO–SiO2–B2O3–Cr2O3–Al2O3–MgO system on the equilibrium interphase distribution of sulfur and boron, and their equilibrium content in the metal. Modeling was carried out using the HSC 8.03 Chemistry software package (Outokumpu). Slag from the desulfurization period of the AOD-process was used as the oxide phase. As a result, it was shown that, in the range of basicities 2.0-2.5 and a content of 2-4% B2O3, it is possible to carry out desulfurization of the metal, providing a sulfur content of 0.001-0.007%, and simultaneous microalloying of steel with boron in an amount of up to 0.0103%.


2021 ◽  
Vol 410 ◽  
pp. 281-286
Author(s):  
Nurlybay K. Kosdauletov ◽  
Vasiliy R. Roshchin

The possibility of joint solid-phase reduction of iron and phosphorus from ferromanganese ore has been experimentally confirmed. Solid-phase reduction was performed at a temperature of 1000°C and exposure time of 2-5 hours, in a CO atmosphere, also produced the separation of the reduction products by melting. The distribution of iron and phosphorus was studied using an electron scanning microscope. The phase analysis of the samples was studied using a Rigaku Ultima IV X-ray diffractometer. The results were processed using the "Match" software. Reducing roasting in a CO atmosphere provides a transition from the oxide phase to the metallic phase of only iron and phosphorus without loss of manganese, thus increasing the concentration of MnO oxide in the residual oxide phase of the ore.


Sign in / Sign up

Export Citation Format

Share Document