Phase Transformation in Fe Alloys Induced by Surface Treatment

2012 ◽  
Vol 706-709 ◽  
pp. 1996-2001 ◽  
Author(s):  
Hisashi Sato ◽  
Takayuki Nishiura ◽  
Eri Miura-Fujiwara ◽  
Yoshimi Watanabe

Difference of the phase transformation behavior at deformation-induced layer depending on surface treatment methods was investigated using Fe-33mass%Ni alloy. As specimens, two kinds of specimens were prepared. One specimen has austenite (γ) single structure, and the other specimen consists of both martensite (α’) and γ phases. Using these specimens, shot-peening tests were performed, and then phase transformation behavior induced by the shot-peening was compared with that by sliding wear reported in previous literature. The deformation-induced layer induced by shot-peening has very fine microstructure consisted of both α’ and γ phases. The microstructure in the deformation-induced layer formed by shot-peening becomes similar with increasing duration of shot-peening regardless of initial microstucture. On the other hand, the deformation-induced layer induced by sliding wear is reported to have γ single structure regardless of initial microstructure. This microstructural difference between shot-peening and sliding wear comes from the difference of heat generation during the surface treatment. Therefore, it is concluded that phase transformation behavior in deformation-induced layer depends on surface treatment method.

2011 ◽  
Vol 158 (8) ◽  
pp. A890 ◽  
Author(s):  
Kevin Rhodes ◽  
Roberta Meisner ◽  
Yoongu Kim ◽  
Nancy Dudney ◽  
Claus Daniel

2003 ◽  
Vol 795 ◽  
Author(s):  
Jae-il Jang ◽  
Songqing Wen ◽  
M. J. Lance ◽  
I. M. Anderson ◽  
G. M. Pharr

ABSTRACTNanoindentation experiments were performed on single crystals of (100) Si using a series of triangular pyramidal indenters with centerline-to-face angles in the range 35.3° to 85.0°. The influences of the indenter geometry on cracking and phase transformation during indentation were systematically studied. Although reducing the indenter angle reduces the threshold load for cracking and increases the crack lengths, c, at a given indention load, P, the frequently observed relation between P and c3/2 is maintained for all of the indenters over a wide range of load. Features in the nanoindentation load-displacement curves in conjunction with Raman spectroscopy of the crystalline and amorphous phases in and around the contact impression show that the indenter geometry also plays a role in the phase transformation behavior. Results are discussed in relation to prevailing ideas about indentation cracking and phase transformation in silicon.


Sign in / Sign up

Export Citation Format

Share Document