Synthesis and Electrochemical Performances of Nanoparticle FePO4 and Ce-Doped FePO4 Cathode Materials for Lithium Ion Batteries by Microemulsion Method

2013 ◽  
Vol 743-744 ◽  
pp. 35-43
Author(s):  
Shi Ming Zhang ◽  
Jun Xi Zhang ◽  
Bo Cheng He ◽  
Suo Jiong Xu ◽  
Xu Ji Yuan

nanosized FePO4 and Fe1-xCexPO4 (x=0.02, 0.04, 0.08) cathode materials were synthesized by microemulsion method. The samples were prepared via a microemulsion system in a H2O/cyclohexane/Triton x-100/n-butyl alcohol at different temperatures (30 , 45 , 50 , 60 ) and then sintered at 380 and 460 for 3 h. The thermal stability, structure and morphology were investigated by means of TG/DCS, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and the electrochemical properties were characterized by cyclic voltammetry (CV) and galvanostatic charge and discharge tests. Results show that synthesis temperature has a great influence on the performances of FePO4, and the sample synthesized at 45 shows the best performances with a diameter of about 20 nm and a high discharge initial specific capacity of 142mAh/g and retaining 123mAh/g after 20 cycles at 0.1 C. The Ce-doped FePO4, Fe1-xCexPO4 (x=0.02, 0.04, 0.08), can effectively improve the electrochemical properties of FePO4 cathode materials. The Fe0.96Ce0.04PO4 exhibits an initial discharge capacity of 158.2mAh/g and retains 152mAh/g after 20 cycles at 0.1 C. Hence, Fe0.96Ce0.04PO4 is a promising candidate for cathode materials of lithium ion batteries.

Ionics ◽  
2016 ◽  
Vol 22 (9) ◽  
pp. 1551-1556 ◽  
Author(s):  
K. Rajammal ◽  
D. Sivakumar ◽  
Navaneethan Duraisamy ◽  
K. Ramesh ◽  
S. Ramesh

2014 ◽  
Vol 161 (14) ◽  
pp. A2153-A2159 ◽  
Author(s):  
Yuexia Yang ◽  
Ruisong Guo ◽  
Guanglan Cai ◽  
Chao Zhang ◽  
Lan Liu ◽  
...  

2015 ◽  
Vol 17 (47) ◽  
pp. 32033-32043 ◽  
Author(s):  
Jing Wang ◽  
Yangyang Yu ◽  
Bing Li ◽  
Tao Fu ◽  
Dongquan Xie ◽  
...  

The Li2TiO3-coated LiNi0.5Co0.2Mn0.3O2 (LTO@NCM) cathode materials are synthesized via an in situ coprecipitation method to improve the electrochemical performance of NCM.


Sign in / Sign up

Export Citation Format

Share Document