A Novel Sonochemical Synthesis of Metal Oxides Based Bhasmas

2013 ◽  
Vol 754 ◽  
pp. 89-97 ◽  
Author(s):  
S. Sivasankaran ◽  
S. Sankaranarayanan ◽  
S. Ramakrishnan

Metal oxides form part of inorganic medicines called Bhasmas, which has been used in a non-allopathic medicine system practiced in India called Ayurveda. Bhasmas may be classified under the nanomedicines of ancient India. The traditional preparation methods involve time consuming and complicated preparation procedures. This paper highlights a novel ultrasound assisted technique called sonochemical synthesis of transition metal oxides in a facile, faster, inherently safer and environmentally benign (green chemistry) way which could be considered to be used for the synthesis of metal oxides such as copper oxide which form part of the copper based Ayurvedic nanomedicine called tamra bhasma, which is copper in its oxide form and used therapeutically as a source of copper. The synthesis procedure outlined here could be considered for the preparation of other types of Bhasmas also.

2017 ◽  
Vol 72 (1) ◽  
pp. 42-48 ◽  
Author(s):  
B. V. Romanovsky ◽  
A. A. Maerle ◽  
A. A. Karakulina ◽  
I. F. Moskovskaya

Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Author(s):  
Michel Fialin ◽  
Guy Rémond

Oxygen-bearing minerals are generally strong insulators (e.g. silicates), or if not (e.g. transition metal oxides), they are included within a rock matrix which electrically isolates them from the sample holder contacts. In this respect, a thin carbon layer (150 Å in our laboratory) is evaporated on the sections in order to restore the conductivity. For silicates, overestimated oxygen concentrations are usually noted when transition metal oxides are used as standards. These trends corroborate the results of Bastin and Heijligers on MgO, Al2O3 and SiO2. According to our experiments, these errors are independent of the accelerating voltage used (fig.l).Owing to the low density of preexisting defects within the Al2O3 single-crystal, no significant charge buildup occurs under irradiation at low accelerating voltage (< 10keV). As a consequence, neither beam instabilities, due to electrical discharges within the excited volume, nor losses of energy for beam electrons before striking the sample, due to the presence of the electrostatic charge-induced potential, are noted : measurements from both coated and uncoated samples give comparable results which demonstrates that the carbon coating is not the cause of the observed errors.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 256
Author(s):  
Christian Rodenbücher ◽  
Kristof Szot

Transition metal oxides with ABO3 or BO2 structures have become one of the major research fields in solid state science, as they exhibit an impressive variety of unusual and exotic phenomena with potential for their exploitation in real-world applications [...]


2021 ◽  
Vol 36 ◽  
pp. 514-550
Author(s):  
Zhihao Lei ◽  
Jang Mee Lee ◽  
Gurwinder Singh ◽  
C.I. Sathish ◽  
Xueze Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document