beam instabilities
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 9)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Elias Métral

AbstractAn important number of coherent beam instability mechanisms can be observed in a particle accelerator, depending if the latter is linear or circular, operated at low, medium or high energy, with a small or a huge amount of turns (for circular machines), close to transition energy or not (below or above), with only one bunch or many bunches, with counter-rotating beams (such as in colliders) or not, if the beam is positively or negatively charged, if one is interested in the longitudinal plane or in the transverse plane, in the presence of linear coupling between the transverse planes or not, in the presence of nonlinearities or not, in the presence of noise or not, etc. Building a realistic impedance model of a machine is a necessary step to be able to evaluate the machine performance limitations, identify the main contributors in case an impedance reduction is required, and study the interaction with other mechanisms such as optics (linear and nonlinear), RF gymnastics, transverse damper, noise, space charge, electron cloud, and beam–beam (in a collider). Better characterising an instability is the first step before trying to find appropriate mitigation measures and push the performance of a particle accelerator, as some mitigation methods are beneficial for some effects and detrimental for some others. For this, an excellent instrumentation is of paramount importance to be able to diagnose if the instability is longitudinal or transverse, single bunch, or coupled bunch, involving only one mode of oscillation or several, and the evolution of the intrabunch motion with intensity is a fundamental observable with high-intensity high-brightness beams. Finally, among the possible mitigation methods of coherent beam instabilities, the ones perturbing the least the single-particle motion (leading to the largest necessary dynamic aperture and beam lifetime) and easiest to implement for day-to-day operation in the machine control room should be preferred.


2021 ◽  
Author(s):  
Martin Weidl ◽  
Artem Bohdan ◽  
Paul Morris ◽  
Martin Pohl

Author(s):  
T. E. Levens ◽  
K. Łasocha ◽  
T. Lefevre ◽  
M. Gąsior ◽  
R. Jones ◽  
...  

2019 ◽  
Vol 873 (1) ◽  
pp. 57 ◽  
Author(s):  
Martin S. Weidl ◽  
Dan Winske ◽  
Christoph Niemann
Keyword(s):  
Ion Beam ◽  

Author(s):  
Wenpeng Wang ◽  
Cheng Jiang ◽  
Shasha Li ◽  
Hao Dong ◽  
Baifei Shen ◽  
...  

Multidimensional instabilities always develop with time during the process of radiation pressure acceleration, and are detrimental to the generation of monoenergetic proton beams. In this paper, a sharp-front laser is proposed to irradiate a triple-layer target (the proton layer is set between two carbon ion layers) and studied in theory and simulations. It is found that the thin proton layer can be accelerated once to hundreds of MeV with monoenergetic spectra only during the hole-boring (HB) stage. The carbon ions move behind the proton layer in the light-sail (LS) stage, which can shield any further interaction between the rear part of the laser and the proton layer. In this way, proton beam instabilities can be reduced to a certain extent during the entire acceleration process. It is hoped such a mechanism can provide a feasible way to improve the beam quality for proton therapy and other applications.


Sign in / Sign up

Export Citation Format

Share Document