Effects of Nano-Al2O3 on the Mechanical Property and Microstructure of Nano-Micro Composite Self-Lubricating Ceramic Tool Material

2013 ◽  
Vol 770 ◽  
pp. 308-311 ◽  
Author(s):  
Ming Dong Yi ◽  
Chong Hai Xu ◽  
Zhao Qiang Chen ◽  
Guang Yong Wu

A new nanomicro composite self-lubricating ceramic tool material was prepared with vacuum hot pressing technique. The effect of nanoAl2O3 powders on the microstructure and mechanical properties of nanomicro composite self-lubricating ceramic tool material was investigated. With the increase of nanoAl2O3 content, the hardness and fracture toughness first up then down. When the nanoAl2O3 content is 4 vol.%, the flexural strength, hardness and fracture toughness reaches 562 MPa, 8.46 MPa·m1/2 and 18.95 GPa, respectively. The microstructure and mechanical property of nanomicro composite self-lubricating ceramic tool material can be improved by the grain refinement strengthening of nanoAl2O3.

2004 ◽  
Vol 471-472 ◽  
pp. 321-325 ◽  
Author(s):  
Jing Sun ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Sui Lian Wang

In this paper, 3mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and TiN/3Y-TZP(adding TiN particles to 3Y-TZP) composites were fabricated by hot-pressing technique. Phase composition, microstructure and mechanical properties of the composites were investigated. It is shown that the flexural strength, fracture toughness and Vickers hardness of TiN/3Y-TZP was significantly improved by the addition of TiN particles compared with 3Y-TZP. The flexural strength of ZYT2 (20wt% TiN addition) is 1318 MPa. The fracture toughness of ZYT4 (40wt% TiN addition) is 16.8MPa·m1/2. The toughening and strengthening mechanisms were analyzed. The XRD results show that the additing of TiN can hinder the transformation from tetragonal phase to monoclinic phase of 3Y-TZP during fabrication process.


Author(s):  
C. Z. Huang ◽  
H. L. Liu ◽  
J. Wang ◽  
Z. W. Liu

The single nano-scale and multi-phase nanocomposite ceramic materials including Al2O3/Al2O3n/SiCn and Al2O3/Ti(C0.7N0.3)n/SiCn are successfully fabricated. Their mechanical properties are better than those of the single-phase alumina material and conventional alumina matrix materials. The multi-scale and single-phase nanocomposite ceramic tool material Al2O3/SiCμ/SiCn is also successfully fabricated. Its flexural strength and fracture toughness is higher than those of single-scale materials Al2O3/SiCμ and Al2O3/SiCn. The multi-scale and multi-phase nanocomposite ceramic tool material Al2O3/TiCμ/TiNn is finally developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix, which can get higher flexural strength and fracture toughness than those of Al2O3/TiC ceramic tool material without nano-scale TiN particle. The coexistent function of nano-scale Al2O3 or Ti(C0.7N0.3), nano-scale SiC and TiN can reduce the sintering temperature and sintering duration time as well as the grain size, and improve the material densification and mechanical properties. The nano-scale SiC grains locating along the grain boundary and inside the micro-scale alumina can form the hybria intergranular-intragranular microstructure which can result in hybria intergranular-transgranular fracture and improve the mechanical properties of the ceramic material. Crack deflection, forking and bridging effects are the main cause for improving the fracture toughness of the materials including Al2O3/Ti(C0.7N0.3)n/SiCn and Al2O3/TiCμ/TiNn.


2011 ◽  
Vol 335-336 ◽  
pp. 736-739
Author(s):  
Xing Li ◽  
Bin Fang ◽  
Xiu Guo Xu ◽  
Chong Hai Xu

The Al2O3(nm)/SiC(μm)/Al2O3(μm)ceramic tool materials were fabricated by the hot-pressing technique. Effect of the compositions on microstructure and mechanical properties is investigated. With nano-particles content decreasing, the flexural strength increased and fine grains can be obtained. When the nano-alumina content is 60wt%, the grain of this sample is fine, the Vickers hardness and flexural strength are 16.24 GPa and 678 MPa, respectively.


2021 ◽  
Vol 47 (10) ◽  
pp. 14551-14560
Author(s):  
Shuai Zhang ◽  
Guangchun Xiao ◽  
Zhaoqiang Chen ◽  
Lianggang Ji ◽  
Chonghai Xu ◽  
...  

2010 ◽  
Vol 431-432 ◽  
pp. 523-526
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Shou Rong Xiao ◽  
Hui Wang ◽  
Ming Hong

Under the liquid-phase hot-pressing technique, the multi-scale titanium diboride matrix nanocomposite ceramic tool materials were fabricated by adding both micro-scale and nano-scale TiN particles into TiB2 with Ni and Mo as sintering aids. The effect of content of nano-scale TiN and sintering temperature on the microstructure and mechanical properties was studied. The result showed that flexural strength and fracture toughness of the composites increased first, and then decreased with an increase of the content of nano-scale TiN, while the Vickers hardness decreased with an increase of the content of nano-scale TiN. The optimal mechanical properties were flexural strength 742 MPa, fracture toughness 6.5 MPa•m1/2 and Vickers hardness 17GPa respectively. The intergranular and transgranular fracture mode were observed in the composites. The metal phase can cause ductility toughening and crack bridging, while crack deflection and transgranular fracture mode could be brought by micro-scale TiN and nano-scale TiN respectively.


2011 ◽  
Vol 335-336 ◽  
pp. 688-694
Author(s):  
Xiao Hui Zhu ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu

Based on the microstructure results of Monte Carlo simulation, a three-dimensional grid model is built up, and imported into the finite element software with C++ language to analyze the mechanical properties of ceramic tool material. The stress field and residual stress of single-phase and multiphase ceramics have been analyzed by the computer simulation technology.


2014 ◽  
Vol 800-801 ◽  
pp. 511-515
Author(s):  
Xian Hua Tian ◽  
Jun Zhao ◽  
Shuai Liu ◽  
Zhao Chao Gong

Close attention has been paid to Functional graded materials (FGMs) worldwide for their novel design ideas and outstanding properties. To verify the advantage of FGMS in the design of ceramic tool materials, Si3N4/(W, Ti)C nanocomposite ceramic tool materials with homogenous and graded structure were fabricated by hot pressing and sintering technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and compared. The experimental results showed that the graded structure improved mechanical properties of the ceramic tool materials, especially the flexural strength and fracture toughness. The introduction of residual compressive stress in the surface layer contributes to the improvement of the properties .


2020 ◽  
Vol 46 (7) ◽  
pp. 8845-8852 ◽  
Author(s):  
Zhe Wang ◽  
Yue Liu ◽  
Bin Zou ◽  
Chuanzhen Huang ◽  
Kai Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document