First Principles Investigation of Divacancy in SiC Polytypes for Solid State Qubit Application

2014 ◽  
Vol 778-780 ◽  
pp. 499-502 ◽  
Author(s):  
Krisztián Szász ◽  
Viktor Ivády ◽  
Erik Janzén ◽  
Ádám Gali

We calculated the hyperfine structure and the zero-field splitting parameters of divacancies in 3C, 4Hand 6HSiC in the ground state and in the excited state for 4HSiC within the framework of density functional theory. Besides that our calculations provide identification of the defect in different polytypes, we can find some carbon atoms next to the divacancy that of the spin polarizations are similar in the ground and excited states. This coherent nuclear spin polarization phenomenon can be the base to utilize13C spins as quantum memory.

2020 ◽  
Author(s):  
Tim Gould ◽  
Gianluca Stefanucci ◽  
Stefano Pittalis

Density functional theory can be generalized to mixtures of ground and excited states, for the purpose of determining energies of excitations using low-cost density functional approximations. Adapting approximations originally developed for ground states to work in the new setting would fast-forward progress enormously. But, previous attempts have stumbled on daunting fundamental issues. Here we show that these issues can be prevented from the outset, by using a fluctuation dissipation theorem (FDT) to dictate key functionals. We thereby show that existing exchange energy approximations are readily adapted to excited states, when combined with a rigorous exact Hartree term that is different in form from its ground state counterpart, and counterparts based on ensemble ansatze. Applying the FDT to correlation energies also provides insights into ground state-like and ensemble-only correlations. We thus provide a comprehensive and versatile framework for ensemble density functional approximations.<br><br>


Author(s):  
Tim Gould ◽  
Gianluca Stefanucci ◽  
Stefano Pittalis

Density functional theory can be generalized to mixtures of ground and excited states, for the purpose of determining energies of excitations using low-cost density functional approximations. Adapting approximations originally developed for ground states to work in the new setting would fast-forward progress enormously. But, previous attempts have stumbled on daunting fundamental issues. Here we show that these issues can be prevented from the outset, by using a fluctuation dissipation theorem (FDT) to dictate key functionals. We thereby show that existing exchange energy approximations are readily adapted to excited states, when combined with a rigorous exact Hartree term that is different in form from its ground state counterpart, and counterparts based on ensemble ansatze. Applying the FDT to correlation energies also provides insights into ground state-like and ensemble-only correlations. We thus provide a comprehensive and versatile framework for ensemble density functional approximations.


2020 ◽  
Author(s):  
Tim Gould ◽  
Gianluca Stefanucci ◽  
Stefano Pittalis

Density functional theory can be generalized to mixtures of ground and excited states, for the purpose of determining energies of excitations using low-cost density functional approximations. Adapting approximations originally developed for ground states to work in the new setting would fast-forward progress enormously. But, previous attempts have stumbled on daunting fundamental issues. Here we show that these issues can be prevented from the outset, by working from a fluctuation dissipation theorem (FDT). We thereby show that existing exchange energy approximations are readily adapted to excited states, when combined with a rigorous exact Hartree term that is different in form from its ground state counterpart, and counterparts based on ensemble ansatze. Applying the FDT to correlation energies also provides insights into ground state-like and ensemble-only correlations. We thus provide a comprehensive and versatile framework for ensemble density functional approximations.<br><br>


2020 ◽  
Author(s):  
Tim Gould ◽  
Gianluca Stefanucci ◽  
Stefano Pittalis

Density functional theory can be generalized to mixtures of ground and excited states, for the purpose of determining energies of excitations using low-cost density functional approximations. Adapting approximations originally developed for ground states to work in the new setting would fast-forward progress enormously. But, previous attempts have stumbled on daunting fundamental issues. Here we show that these issues can be prevented from the outset, by using a fluctuation dissipation theorem (FDT) to dictate key functionals. We thereby show that existing exchange energy approximations are readily adapted to excited states, when combined with a rigorous exact Hartree term that is different in form from its ground state counterpart, and counterparts based on ensemble ansatze. Applying the FDT to correlation energies also provides insights into ground state-like and ensemble-only correlations. We thus provide a comprehensive and versatile framework for ensemble density functional approximations.


2008 ◽  
Vol 1110 ◽  
Author(s):  
Panchapakesan Ganesh ◽  
Ronald Cohen

AbstractRecent first principles simulations using density functional theory and novel low temperature x-ray diffraction experiments show the existence of a high pressure morphtotropic phase boundary (MPB) in pure PbTiO3. In this paper we apply chemical pressure by substituting smaller atoms in the ABO3 ‘A’ and ‘B’ sites. We find that the ground state of layered PbSnTiO3 (PSnT) is Pmm2, and for rocksalt SnGeTiO3 and PbGeTiO3 is R3m. The polarization of PbSnTiO3 is large (1.13,0,0)C/m2 and is due to the large Born effective charge of the small ‘Sn’ atom. We estimate the d33 for PSnT to be about 2400 pC/N, which is as large as that of currently used relaxor ferroelectrics.


MRS Advances ◽  
2017 ◽  
Vol 2 (27) ◽  
pp. 1449-1454 ◽  
Author(s):  
Wei Mei ◽  
Jian Sun

ABSTRACTThe ground state properties of pure Ti with α, β and ω structures and of the binary Ti-xV(x=5‒30) at.% alloys with β and ω structures were calculated by first-principles method based on density functional theory, and subsequently the energy landscape of the displacive phase transition of β to ω were determined. The calculated results show that the energy barrier appears for the displacive phase transition of β to ω in Ti-(15‒30) at.% V alloys at 300 K, but does not at 0 K. The energy barriers increase monotonously with increase of the temperature and the V content. These results can explain the formation of athermal ω phase and shear-assisted β to ω transition observed in as-quenched Ti-V base alloys.


2010 ◽  
Vol 133 (6) ◽  
pp. 064101 ◽  
Author(s):  
Eugenii Ya. Misochko ◽  
Denis V. Korchagin ◽  
Konstantin V. Bozhenko ◽  
Sergei V. Chapyshev ◽  
Sergei M. Aldoshin

2016 ◽  
Vol 3 (1) ◽  
pp. 89 ◽  
Author(s):  
Shalika Ram Bhandari ◽  
Ram Kumar Thapa ◽  
Madhav Prasad Ghimire

<p>Electronic and magnetic properties of La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub> had been studied by first-principles density functional theory (DFT). Based on the DFT calculation La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub> is found to have a ferromagnetic (FM) ground state. The material undergo charge-transfer type insulator to Mott-Hubbard type insulator transition which happens due to strong correlation in La-4f and Cu-3d states. Our results show that the 3d electrons of Cu hybridize strongly with O-2p states near the Fermi level giving rise to the insulating state of La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub>. Our study suggests that the enhanced magnetic moment is a result of itinerant exchange rather than the exchange interaction involving individual ions of Cu atoms. The total magnetic moment calculated in the present studies is 2 μ<sub>B</sub> per unit cell for La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub>.</p><p>Journal of Nepal Physical Society Vol.3(1) 2015: 89-96</p>


Sign in / Sign up

Export Citation Format

Share Document