Microscopic Phase Field Study on the Kinetics of Order-Disorder Transition of APDBs Formed between DO22 Phases during Stress Aging

2014 ◽  
Vol 789 ◽  
pp. 530-535 ◽  
Author(s):  
Ming Yi Zhang ◽  
Guang Quan Yue ◽  
Jia Zhen Zhang ◽  
Kun Yang ◽  
Zheng Chen

Kinetics of order-disorder transition at antiphase domain boundary (APDB) formed between DO22 (Ni3V) phases during stress aging was investigated using microscopic phase field model. The results demonstrated that whether order-disorder transition happens or not depends on the atomic structure of the APDB. Accompanied with the depletion of V and enrichment of Ni and Al, order-disorder transition happened at the APDB (001)//(002). Whereas at the APDB {100}·1⁄2[100], which remains ordered with temporal evolution, Ni and Al enrich and V depletes. Composition evolution of APDB with order-disorder transition favors the nucleation of the L12 and disordered phase. Some of the grains grew bigger while the others disappeared, accompanying the formation of disordered phase layer during order-disorder transition of APDBs, and the order-disorder transition of APDBs can be considered as accompanying process of coarsening of ordered domain phases and growth of disordered phases.

2010 ◽  
Vol 160-162 ◽  
pp. 996-1000
Author(s):  
Ming Yi Zhang ◽  
Kun Yang ◽  
Zheng Chen

Based on the microscopic phase-field model, the precipitation process of Ni75Al4.3V20.7 alloy at 1190K is simulated, and the kinetics of order-disorder transition at antiphase domain boundary (APDB) formed between DO22 (Ni3V) phases is investigated. After the ordered APDB formed by the impingement of growing DO22 (Ni3V) domains, the order-disorder transition at APDB is happened. Accompanied with the enrichment of Ni and Al at the APDB, the ordered APDB transforms into a thin disordered phase layer. The second phase L12 nucleates at the order-disorder interface between DO22 and disordered phases, and grows along the disorder phase layer quickly. The order-disorder transition at the ordered APDB accelerates the nucleation and growth of L12 phase at the APDB. The disordered phase caused by the order-disordered transition can be considered the transient phase during the precipitation process of L12 phase.


2010 ◽  
Vol 44-47 ◽  
pp. 3736-3740
Author(s):  
Ming Yi Zhang ◽  
Kun Yang ◽  
Zheng Chen

The order-disorder transition at antiphase domain boundary (APDB) between DO22 (Ni3V) phases is investigated using the microscopic phase-field model. After the formation of ordered APDB, the order-disorder transition at APDB is happened, and the ordered APDB transforms into a thin disordered phase layer. Accompanied with the enrichment of Ni and Al at the disordered APDB, the second phase L12 nucleates at the order-disorder interface between DO22 phases and grows along the disordered phase layer. The order-disorder transition at the ordered APDB makes the nucleation and growth of the second phase L12 much easier and faster. The disordered phase caused by the order-disorder transition at the APDB can be considered as the transient phase during the precipitation process of L12 phase.


2011 ◽  
Vol 689 ◽  
pp. 226-234
Author(s):  
Yong Xin Wang ◽  
Yong Biao Wang ◽  
Zheng Chen ◽  
Yan Li Lu

It is common that the pre-precipitation phase with kinetics advantage is found during non-equilibrium transformation. The continuously changed stress in the transformation increases the complication of precipitation process. The stress induces Ll0pre-precipitation phase in Ni75-Al12.5-V12.5alloy is studied by microscope phase-field model in this paper. It is particularly show that Ll2phase precipitates directly without stress. There is no Ll0phase to be found in the disordered matrix. Oppositely, Ll0phase precipitates firstly with stress, and then it turns into Ll2phase. When stress is less, either or both above situations are observed. While stress is stronger, a large range of Ll0phase precipitates firstly. Then a part of it dissolves. The rest turns into Ll2phase. The precipitation of pre-precipitation phase accelerates the precipitation process. The larger the stress and the more Ll0phase precipitation, the longer it exists and the shorter the induction period is.


Author(s):  
Shenyang Hu ◽  
Charles H Henager ◽  
Yulan Li ◽  
Fei Gao ◽  
Xin Sun ◽  
...  

2011 ◽  
Vol 689 ◽  
pp. 149-153 ◽  
Author(s):  
Ming Yi Zhang ◽  
Zheng Chen ◽  
Xiao Li Fan ◽  
Yong Xin Wang ◽  
Yan Li Lu

The site occupation behavior of Al in Ni3V phase with a DO22structure in Ni75AlxV25-xalloy was studied using the microscopic phase-field model which is based on the microscopic diffusion equations. Attribute to the coordination geometry effects, the concentration of Al are non-equal on the two non-equivalent Ni sites, and Al prefers to occupy the NiⅠsites. However, the Al does not prefer to occupy both of the two Ni sites, because the Al concentration on V site is intermediately between that on NiⅠand NiⅡsite. The calculated ordering energies suggest that the site preference of alloying elements are all energetic favorable.


2019 ◽  
Vol 159 ◽  
pp. 103-109 ◽  
Author(s):  
Y.L. Li ◽  
B.D. Zeidman ◽  
S.Y. Hu ◽  
C.H. Henager ◽  
T.M. Besmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document