scholarly journals The Effect of Rotating Magnetic Field on the Solidified Structure of Sn-Cd Peritectic Alloys

2014 ◽  
Vol 790-791 ◽  
pp. 414-419 ◽  
Author(s):  
Mária Svéda ◽  
Anna Sycheva ◽  
Jenő Kovács ◽  
Arnold Rónaföldi ◽  
András Roósz

The peritectic alloys, such as some types of steel, Ni-Al, Fe-Ni, Ti-Al, Cu-Sn, are commercially important. In contrast to other types of alloys, many unique structures (e.g. banded or island ones) can form when peritectic alloys are directionally solidified under various solidification conditions. It can be observed in the course of the directional solidification experiments performed in a rotating magnetic field (RMF) that the melt flow has a significant effect on the solidified structure of Sn-Cd alloys. This effect was investigated experimentally for the case of Sn1.6 wt% Cd peritectic alloy. For this purpose, a Bridgman-type gradient furnace was equipped with an inductor, which generates a rotating magnetic field in order to induce a flow in the melt. As a result, the forced melt flow substantially changes the solidified cellular microstructure. The cell size and the volume fraction of the primary tin phase were measured by an image analyzer on the longitudinal polished sections along the entire length of the samples. The microstructure was investigated by scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS).

2010 ◽  
Vol 649 ◽  
pp. 249-254 ◽  
Author(s):  
Gerhard Zimmermann ◽  
Viktor T. Vitusevych ◽  
Laszlo Sturz

The objective of this paper is the experimental investigation of the microstructure in Al-6wt%Si-4wt%Cu alloy, directionally solidified without and with forced melt flow, induced by a rotating magnetic field. The flow leads to reduced primary dendrite spacing and to strong radial segregation of silicon and copper. As a consequence the local solidification conditions change, resulting in different types of Al2Cu phase formation. This outcome is explained by ThermoCalc calculations predicting the corresponding solidification behavior.


2017 ◽  
Vol 898 ◽  
pp. 407-412 ◽  
Author(s):  
Huan Liu ◽  
Wei Dong Xuan ◽  
Xing Fu Ren ◽  
Bao Jun Wang ◽  
Jian Bo Yu ◽  
...  

The effect of a 6T high magnetic field on the microstructure of directionally solidified NiAl-Cr (Mo)-Si near-eutectic alloy was investigated at the withdrawal rates of 2, 10 and 50 μm/s. The results showed that the microstructure evolved from planar eutectic to primary NiAl dendrites + cellular eutectic and then to dendritic eutectic with the increasing withdrawal rate. When the magnetic field was imposed, the well-aligned eutectic lamellae were disturbed and transformed into a wavy one at 2 μm/s. When the withdrawal rate increased to 10 μm/s, the application of the magnetic field destroyed the primary NiAl dendrite array and caused the occurrence of columnar-to-equiaxed transition (CET) of the NiAl dendrites. The volume fraction of primary dendrites also decreased. In addition, the width of intercellular/interdendritic regions decreased in cellular/dendritic eutectic structures when directionally solidified under the magnetic field. The above results should be attributed to the combined action of the thermoelectric magnetic force and the thermoelectric magnetic convection.


Sign in / Sign up

Export Citation Format

Share Document