rotating magnetic field
Recently Published Documents


TOTAL DOCUMENTS

1067
(FIVE YEARS 198)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Tate Gill ◽  
Christopher L. Sercel ◽  
Joshua M. Woods ◽  
Benjamin A. Jorns

2022 ◽  
Vol 171 ◽  
pp. 107258
Author(s):  
Andrzej Skumiel ◽  
Peter Kopcansky ◽  
Milan Timko ◽  
Matus Molcan ◽  
Katarina Paulovicova ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 115
Author(s):  
Cheng Zhang ◽  
Yong Wang ◽  
Yuduo Chen ◽  
Xing Ma ◽  
Wenjun Chen

This article introduces a facile droplet-based microfluidic method for the preparation of Fe3O4-incorporated alginate hydrogel magnetic micromotors with variable shapes. By using droplet-based microfluidics and water diffusion, monodisperse (quasi-)spherical microparticles of sodium alginate and Fe3O4 (Na-Alg/Fe3O4) are obtained. The diameter varies from 31.9 to 102.7 µm with the initial concentration of Na-Alginate in dispersed fluid ranging from 0.09 to 9 mg/mL. Calcium chloride (CaCl2) is used for gelation, immediately transforming Na-Alg/Fe3O4 microparticles into Ca-Alginate hydrogel microparticles incorporating Fe3O4 nanoparticles, i.e., Ca-Alg/Fe3O4 micromotors. Spherical, droplet-like, and worm-like shapes are yielded depending on the concentration of CaCl2, which is explained by crosslinking and anisotropic swelling during the gelation. The locomotion of Ca-Alg/Fe3O4 micromotors is activated by applying external magnetic fields. Under the rotating magnetic field (5 mT, 1–15 Hz), spherical Ca-Alg/Fe3O4 micromotors exhibit an average advancing velocity up to 158.2 ± 8.6 µm/s, whereas worm-like Ca-Alg/Fe3O4 micromotors could be rotated for potential advancing. Under the magnetic field gradient (3 T/m), droplet-like Ca-Alg/Fe3O4 micromotors are pulled forward with the average velocity of 70.7 ± 2.8 µm/s. This article provides an inspiring and timesaving approach for the preparation of shape-variable hydrogel micromotors without using complex patterns or sophisticated facilities, which holds potential for biomedical applications such as targeted drug delivery.


2021 ◽  
pp. 133913
Author(s):  
Joanna Jabłońska ◽  
Adrian Augustyniak ◽  
Marian Kordas ◽  
Kamila Dubrowska ◽  
Dawid Sołoducha ◽  
...  

Author(s):  
Joel Abraham Mathews

Abstract: This work implements the help of a super capacitor hybridized with a battery pack to power a motor to work an electric bike. The supercapacitor of specification is built in combination with the battery pack to work in pair at instances where more load in needed. For example in situations like accelerating, decelerating, and climbing a slope. The supercapacitor is recharged while in motion using two different technologies: 1. Regenerative Braking and 2. Generator incorporated into wheel hub. Regenerative braking is an energy recovery mechanism that slows down a moving vehicle or object by converting its kinetic energy into a form that can be either used immediately or stored until needed. In this mechanism, the electric traction motor uses the vehicle's momentum to recover energy that would otherwise be lost to the brake discs as heat. This contrasts with conventional braking systems, where the excess kinetic energy is converted to unwanted and wasted heat due to friction in the brakes, or with dynamic brakes, where the energy is recovered by using electric motors as generators but is immediately dissipated as heat in resistors. In addition to improving the overall efficiency of the vehicle, regeneration can significantly extend the life of the braking system as the mechanical parts will not wear out very quickly. The system uses Faradays Law of Electromagnetic Induction to induce an EMF and generate voltage by passing a current carrying conductor through a rotating magnetic field. Using this implementation, it has been noted that the battery life has been increased significantly and the total range of the bike has also increased considerably. Keywords: Batteries, Battery pack, Supercapacitor, Hybrid power system, Dynamo mechanism


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ying Xiang ◽  
Qing Li ◽  
Yongkai Li ◽  
Wei Xie ◽  
Huan Yang ◽  
...  

AbstractIn transition metal compounds, due to the interplay of charge, spin, lattice and orbital degrees of freedom, many intertwined orders exist with close energies. One of the commonly observed states is the so-called nematic electron state, which breaks the in-plane rotational symmetry. This nematic state appears in cuprates, iron-based superconductor, etc. Nematicity may coexist, affect, cooperate or compete with other orders. Here we show the anisotropic in-plane electronic state and superconductivity in a recently discovered kagome metal CsV3Sb5 by measuring c-axis resistivity with the in-plane rotation of magnetic field. We observe a twofold symmetry of superconductivity in the superconducting state and a unique in-plane nematic electronic state in normal state when rotating the in-plane magnetic field. Interestingly these two orders are orthogonal to each other in terms of the field direction of the minimum resistivity. Our results shed new light in understanding non-trivial physical properties of CsV3Sb5.


2021 ◽  
Vol 22 (22) ◽  
pp. 12397
Author(s):  
Marta Woroszyło ◽  
Daria Ciecholewska-Juśko ◽  
Adam Junka ◽  
Radosław Drozd ◽  
Marcin Wardach ◽  
...  

Methicillin-resistant strains of Staphylococcus aureus (MRSA) have developed resistance to most β-lactam antibiotics and have become a global health issue. In this work, we analyzed the impact of a rotating magnetic field (RMF) of well-defined and strictly controlled characteristics coupled with β-lactam antibiotics against a total of 28 methicillin-resistant and sensitive S. aureus strains. The results indicate that the application of RMF combined with β-lactam antibiotics correlated with favorable changes in growth inhibition zones or in minimal inhibitory concentrations of the antibiotics compared to controls unexposed to RMF. Fluorescence microscopy indicated a drop in the relative number of cells with intact cell walls after exposure to RMF. These findings were additionally supported by the use of SEM and TEM microscopy, which revealed morphological alterations of RMF-exposed cells manifested by change of shape, drop in cell wall density and cytoplasm condensation. The obtained results indicate that the originally limited impact of β-lactam antibiotics in MRSA is boosted by the disturbances caused by RMF in the bacterial cell walls. Taking into account the high clinical need for new therapeutic options, effective against MRSA, the data presented in this study have high developmental potential and could serve as a basis for new treatment options for MRSA infections.


Sign in / Sign up

Export Citation Format

Share Document