gradient material
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 53)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
pp. 2646-2657
Author(s):  
Cuiliu Han ◽  
Xinyu Yang ◽  
Binrong Nong ◽  
Zhongwen Zhu ◽  
Jiuxing Zhang

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6521
Author(s):  
Yeabsra Mekdim Hailu ◽  
Aamer Nazir ◽  
Shang-Chih Lin ◽  
Jeng-Ywan Jeng

Functionally graded lattice structures have attracted much attention in engineering due to their excellent mechanical performance resulting from their optimized and application-specific properties. These structures are inspired by nature and are important for a lightweight yet efficient and optimal functionality. They have enhanced mechanical properties over the uniform density counterparts because of their graded design, making them preferable for many applications. Several studies were carried out to investigate the mechanical properties of graded density lattice structures subjected to different types of loadings mainly related to tensile, compression, and fatigue responses. In applications related to biomedical, automotive, and aerospace sectors, dynamic bending and rotational stresses are critical load components. Therefore, the study of torsional properties of functionally gradient lattice structures will contribute to a better implementation of lattice structures in several sectors. In this study, several functionally gradient triply periodic minimal surfaces structures and strut-based lattice structures were designed in cylindrical shapes having 40% relative density. The HP Multi Jet Fusion 4200 3D printer was used to fabricate all specimens for the experimental study. A torsional experiment until the failure of each structure was conducted to investigate properties of the lattice structures such as torsional stiffness, energy absorption, and failure characteristics. The results showed that the stiffness and energy absorption of structures can be improved by an effective material distribution that corresponds to the stress concentration due to torsional load. The TPMS based functionally gradient design showed a 35% increase in torsional stiffness and 15% increase in the ultimate shear strength compared to their uniform counterparts. In addition, results also revealed that an effective material distribution affects the failure mechanism of the lattice structures and delays the plastic deformation, increasing their resistance to torsional loads.


2021 ◽  
Author(s):  
jalal Torabi ◽  
Jarkko Niiranen

Abstract The main objective of this paper is to develop a theoretically and numerically reliable and efficient methodology based on combining a finite element method and a strain gradient shear deformation plate model accounting for the nonlinear free and forced vibrations of cellular plates having equitriangularly prismatic metamaterial cores. The proposed model based on the nonlinear finite element strain gradient elasticity is developed for the first time to provide a computationally efficient framework for the simulation of the underlying nonlinear dynamics of cellular plates with advanced microarchitectures. The corresponding governing equations follow Mindlin’s SG elasticity theory including the micro-inertia effect applied to the first-order shear deformation plate theory along with the nonlinear von Kármán kinematics. Standard and higher-order computational homogenization methods determine the classical and strain gradient material constants, respectively. A higher-order \({C}^{1}\)-continuous 6-node finite element is adopted for the discretization of the governing variational formulation with respect to the spatial domain, and an arc-length continuation technique along with time periodic discretization is implemented to solve the resulting nonlinear time-dependent problem. Through a set of comparative studies with 3D full-field models as references, the accuracy and efficacy of the proposed dimension reduction methodology are demonstrated for a diverse range of problem parameters for analyzing the large-amplitude dynamic structural response.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2468
Author(s):  
Tianyu Chen ◽  
Jianjun Li

Extensive experiments have shown that gradient nano-grained metals have outstanding synergy of strength and ductility. However, the deformation mechanisms of gradient metals are still not fully understood due to their complicated gradient microstructure. One of the difficulties is the accurate description of the deformation of the nanocrystalline surface layer of the gradient metals. Recent experiments with a closer inspection into the surface morphology of the gradient metals reported that shear bands (strain localization) occur at the surface of the materials even under a very small, applied strain, which is in contrast to previously suggested uniform deformation. Here, a dislocation density-based computational model is developed to investigate the shear band evolution in gradient Cu to overcome the above difficulty and to clarify the above debate. The Voronoi polygon is used to establish the irregular grain structure, which has a gradual increase in grain size from the material surface to the interior. It was found that the shear band occurs at a small applied strain in the surface region of the gradient structure, and multiple shear bands are gradually formed with increasing applied load. The early appearance of shear banding and the formation of abundant shear bands resulted from the constraint of the coarse-grained interior. The number of shear bands and the uniform elongation of the gradient material were positively related, both of which increased with decreasing grain size distribution index and gradient layer thickness or increasing surface grain size. The findings are in good agreement with recent experimental observations in terms of stress-strain responses and shear band evolution. We conclude that the enhanced ductility of gradient metals originated from the gradient deformation-induced stable shear band evolution during tension.


2021 ◽  
pp. 547-557
Author(s):  
Y. F. Wang ◽  
C. X. Huang ◽  
M. S. Wang ◽  
Y. S. Li ◽  
Y. T. Zhu
Keyword(s):  

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1091
Author(s):  
Tao Ma ◽  
Huirong Li ◽  
Jianxin Gao ◽  
Yungang Li

Research on improving the corrosion resistance of carbon steel has become a hot topic in the iron and steel field in recent years. Copper plating on the surface of carbon steel is considered an effective means to improve its corrosion resistance, but the copper-plated carbon steel material prepared by this method has the problems of poor abrasion resistance, easy delamination of copper layer and similar issues, which affect the service performance of the copper-plated carbon steel material. To solve this problem, a new type of material whose surface is copper and the copper element is gradually diffused into carbon steel was developed by a plating-diffusion method, which is defined as a copper-carbon steel gradient material. Carbon steel with a copper plated surface and the Cu-Fe/carbon steel gradient material with 80% Cu content on the surface were prepared by the same method. The cross-sectional microstructure and composition of different samples were analysed, and the corrosion behaviors of samples in 3.5% NaCl solution were studied by the linear polarization curve method and electrochemical impedance spectroscopy. The cross-sectional microstructure result shows that the diffusion of copper in carbon is mainly carried out along its grain boundary, and the diffusion of copper will inhibit the growth of grains during heat treatment. As shown in the results of corrosion behaviors, there is no pitting corrosion in the corrosion process of all samples, as well as the stable passive film. All samples showed active dissolution. Compared with carbon steel, the corrosion potential of the Cu/carbon steel gradient material becomes more positive from −600 mV to −362 mV,the corrosion current density decreases from 53.0 μA/cm2 to 30.6 μA/cm2 and the radius of electrochemical impedance spectroscopy enlarges while the corrosion resistance is improved, and the corrosion resistance is mainly obtained by its surface copper layer. The corrosion resistance of Cu-Fe/carbon steel gradient material is lower than that of Cu/carbon steel gradient material, while it is still better than carbon steel, and it shows a clear passivation trend during corrosion. Therefore, the copper/carbon steel gradient material can significantly improve the corrosion resistance of carbon steel. Even after the surface copper layer is destroyed, the gradient material can protect the matrix and improve the service life of the material.


2021 ◽  
Vol 64 (10) ◽  
Author(s):  
Chuang Zhang ◽  
Zhongchang Song ◽  
Steven W. Thornton ◽  
Erqian Dong ◽  
Peizheng Cao ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4893
Author(s):  
Ziyang Xiu ◽  
Boyu Ju ◽  
Saiyue Liu ◽  
Yiwei Song ◽  
Jindan Du ◽  
...  

In this paper, six-layer AlN/Al gradient composites were prepared by a spark plasma sintering process to study the influences of sintering temperature and holding time on the microstructure and mechanical properties. The well-bonded interface enables the composite to exhibit excellent thermal and mechanical properties. The hardness and thermal expansion properties of the composite exhibit a gradient property. The hardness increased with the volume fraction of AlN while the CTE decreased as the volume fraction of AlN. The thermal expansion reaches the lowest value of 13–14 ppm/K, and the hardness reaches the maximum value of 1.25 GPa, when the target volume fraction of AlN is 45%. The simulation results show that this gradient material can effectively reduce the thermal stress caused by the mismatch of the thermal expansion coefficient as a transmitter and receiver (T/R) module. This paper attempts to provide experimental support for the preparation of gradient Al matrix composites.


2021 ◽  
pp. 108128652110333
Author(s):  
Maximilian Stilz ◽  
David Plappert ◽  
Florian Gutmann ◽  
Stefan Hiermaier

In this work we present a three-dimensional extension of pantographic structures and describe its properties after homogenization of the unit cell. Here we rely on a description involving only the first gradient of displacement, as the semi-auxetic property is effectively described by first-order stiffness terms. For a homogenization technique, discrete asymptotic expansion is used. The material shows two positive ([Formula: see text]) and one negative Poisson’s ratios ([Formula: see text]). If, on the other hand, we assume inextensible Bernoulli beams and perfect pivots, we find a vanishing stiffness matrix, suggesting a purely higher gradient material.


Sign in / Sign up

Export Citation Format

Share Document