Temperature Memory Effect of Ti-Ni-Hf-Y High Temperature Shape Memory Alloy

2017 ◽  
Vol 898 ◽  
pp. 598-603
Author(s):  
Jun Li ◽  
Xiao Yang Yi ◽  
Wei Hong Gao ◽  
Wen Long Song ◽  
Xiang Long Meng

Temperature memory effect in the solution-treated Ti-Ni-Hf-Y high temperature shape memory alloy (HTSMA) was investigated. The results showed that the temperature memory effect induced by the partial cycling could be detected in the subsequent complete transformation cycling for the solution-treated Ti-Ni-Hf-Y alloy. The temperature memory effect is one-time phenomenon. However, the temperature memory effect could last at least 20 times when the sample was employed 10 times complete thermal cycles. Multiple-steps temperaure memory effect can be observed as the sample undergoes the lower temperature partial thermal cycle in sequence. The mechanisms of the temperature memory effect were discussed in this paper.

2008 ◽  
Vol 138 ◽  
pp. 399-406 ◽  
Author(s):  
Xiang Long Meng ◽  
Yu Dong Fu ◽  
Wei Cai ◽  
J.X. Zhang ◽  
Qing Fen Li ◽  
...  

The martensitic transformation behavior and shape memory effect (SME) have been investigated in a Ni-rich Ti29.6Ni50.4Hf20 high temperature shape memory alloy (SMA) in the present study. After aging, the transformation temperatures of Ti29.6Ni50.4Hf20 alloy increase obviously due to the precipitation of (Ti,Hf)3Ni4 particles. And the transformation sequence changes from one-step to two-step. When the experimental alloy is aged at different temperatures for 2h, the transformation temperatures increase rapidly with increasing the aging temperature and then change slightly with further increasing the aging temperature. Most of the martensite variants preferentially oriented in the aged Ti29.6Ni50.4Hf20 alloy. The aged Ti29.6Ni50.4Hf20 alloy shows the better thermal stability of transformation temperatures than the solution-treated one because the precipitates depress the introduction of defects during thermal cycling. In addition, the proper aged Ti29.6Ni50.4Hf20 alloy also shows the larger SME than the solution-treated one since the precipitates strengthen the matrix strongly.


2006 ◽  
Vol 41 (18) ◽  
pp. 6165-6167 ◽  
Author(s):  
Z. Y. Gao ◽  
Y. Wu ◽  
Y. X. Tong ◽  
W. Cai ◽  
Y. F. Zheng ◽  
...  

2019 ◽  
Vol 163 ◽  
pp. 1-13 ◽  
Author(s):  
C. Hayrettin ◽  
O. Karakoc ◽  
I. Karaman ◽  
J.H. Mabe ◽  
R. Santamarta ◽  
...  

2020 ◽  
Vol 260 ◽  
pp. 126930
Author(s):  
Yanqing Zhang ◽  
Hengxing Jiang ◽  
Xingjun Liu ◽  
Lusheng Huang ◽  
Shuiyuan Yang ◽  
...  

2010 ◽  
Vol 654-656 ◽  
pp. 2150-2153 ◽  
Author(s):  
Hideki Hosoda ◽  
Makoto Taniguchi ◽  
Tomonari Inamura ◽  
Hiroyasu Kanetaka ◽  
Shuichi Miyazaki

Effects of single- and multi-step aging on mechanical properties and shape memory properties of Ti-6Mo-8Al (mol%) biomedical shape memory alloy were studied using tensile tests at room temperature (RT). The solution-treated alloy at RT was two phase of bcc β and martensite α". Tensile tests revealed that the solution-treated alloy exhibited good shape memory effect. As for the single-step aging, (1) pseudoelastic shape recovery by unloading was observed after aging at 623K, (2) the alloy became brittle after aging at 773K due to ω embrittlement, and (3) strength was improved with small shape memory effect by aging at 1023K. On the other hand, after a multistep aging at 773K-1023K-1123K, the alloy was strengthened and showed perfect shape recovery. The improvement must be achieved by the formation of fine and uniform hcp α precipitates.


2015 ◽  
Vol 2 ◽  
pp. S867-S870 ◽  
Author(s):  
M.Z. Zhou ◽  
X. Zhang ◽  
X.L. Meng ◽  
W. Cai ◽  
L.C. Zhao

2016 ◽  
Vol 68 ◽  
pp. 113-117 ◽  
Author(s):  
Xin Zhang ◽  
Qingsuo Liu ◽  
Xianshun Zeng ◽  
Jiehe Sui ◽  
Wei Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document