transformation temperatures
Recently Published Documents


TOTAL DOCUMENTS

411
(FIVE YEARS 71)

H-INDEX

31
(FIVE YEARS 4)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 133
Author(s):  
Michal Rameš ◽  
Vít Kopecký ◽  
Oleg Heczko

The key for the existence of magnetic induced reorientation is strong magnetocrystalline anisotropy, i.e., the coupling between ferroelastic and ferromagnetic ordering. To increase the transformation temperatures and thus functionality, various elemental alloying in Ni-Mn-Ga is tried. We analyzed more than twenty polycrystalline alloys alloyed by small amount (up to 5atom%) of transitional metals Co, Fe, Ni, and Cu for the value of magnetic anisotropy in search of general trends with alloying. In agreement with previous reports, we found that maximum anisotropy occurs at stoichiometric Ni2MnGa and any alloying decreases its value. The strongest decrease of the anisotropy is observed in the case where the alloyed elements substitute Ga.


Author(s):  
Mohammadreza Zamani ◽  
Mahmoud Kadkhodaei ◽  
Mohsen Badrossamay ◽  
Ehsan Foroozmehr

Nitinol is a well-known shape memory alloy (SMA) which is widely used due to its unique properties such as shape memory effect and pseudoelasticity. However, challenges fabricating Nitinol parts have limited the use of this alloy. Nowadays, additive manufacturing methods, specifically selective laser melting (SLM), are being used as an alternative to conventional methods for fabricating Nitinol specimens. Achieving a dense structure and controlling the transformation temperatures in such products have been among the most important challenges for several research groups. In the present study, fabrication of dense Nitinol parts by SLM together with control of their transformation temperatures is investigated with the main purpose of achieving pseudoelastic products at room temperature. For this purpose, the effect of process parameters on density, transformation temperatures, microstructure, hardness, and shape memory response are studied. The influence of process parameters on transformation temperatures varies depending on the amount of power so that the effect of scan tracks spacing for high powers is more pronounced than that for low powers. The hardness and compressive strength of the parts are also affected by the process parameters. Accordingly, optimal parameters are found to fabricate dense pseudoelastic parts with the ability of strain recovery at ambient temperature.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1991
Author(s):  
Benedikt Distl ◽  
Katja Hauschildt ◽  
Florian Pyczak ◽  
Frank Stein

The application of light-weight intermetallic materials to address the growing interest and necessity for reduction of CO2 emissions and environmental concerns has led to intensive research into TiAl-based alloy systems. However, the knowledge about phase relations and transformations is still very incomplete. Therefore, the results presented here from systematic thermal analyses of phase transformations in 12 ternary Ti-Al-Nb alloys and one binary Ti-Al measured with 4–5 different heating rates (0.8 to 10 °C/min) give insights in the kinetics of the second-order type reaction of ordered (βTi)o to disordered (βTi) as well as the three first-order type transformations from Ti3Al to (αTi), ωo (Ti4NbAl3) to (βTi)o, and O (Ti2NbAl) to (βTi)o. The sometimes-strong heating rate dependence of the transformation temperatures is found to vary systematically in dependence on the complexity of the transformations. The dependence on heating rate is nonlinear in all cases and can be well described by a model for solid-solid phase transformations reported in the literature, which allows the determination of the equilibrium transformation temperatures.


2021 ◽  
Vol 27 (4) ◽  
pp. 207-209
Author(s):  
Peter Prislupčák ◽  
Tibor Kvačkaj ◽  
Jana Bidulská ◽  
Pavol Záhumenský ◽  
Viera Homolová ◽  
...  

The article is aimed to investigate a shift of transformation temperatures of C-Mn-Al HSLA steel with different cooling rates. The transformation temperatures from austenite to ferrite have been determined by dilatometry using thermal-mechanical simulator Gleeble 1500D. To define the start and finishing temperatures of the austenite-ferrite transformation intersectional method was used. Effect of cooling rate on transformation temperature has been evaluated for 0.17, 1, 5, 10, 15, 20, 25°C.s-1. There was found out that rising the cooling rate results in moving transformation temperature range to lower temperatures. The transformation temperatures have been also compared with temperatures calculated using equations of several authors. Some of them have considered cooling rates only. Cooling rates have effect on final microstructure. The effect has been evaluated by measuring hardness (HV10) relating the cooling rates from 0.17 to 25°C.s-1. Increasing cooling rates resulted in increase of hardness. Moreover, Thermo-Calc software was used to determine the Ae3 and Ae1 equilibrium temperatures. Equilibrium transformation temperatures Ae3-Ae1 were higher than experimentally measured by dilatometric method using Gleeble 1500D.


2021 ◽  
Vol 100 (12) ◽  
pp. 410-420
Author(s):  
KRISHNA SAMPATH ◽  

Recently, Dr. Glyn M. Evans posted a large shielded metal arc (SMA) weld metal (WM) database on the ResearchGate website (researchgate.net). This database contains more than 950 WM compositions, along with their respective WM tensile and Charpy V-notch (CVN) impact properties. In particular, the CVN impact properties list the test temperatures that achieved 28 and 100 J impact energy for each WM composition. While the availability of this SMA WM database is a valuable and rare gift to the welding community, how could the welding community analyze this database to gain valuable insights? This paper utilizes a constraints-based model (CBM) as a simple and effective framework to organize and analyze this very large Fe-C-Mn SMA WM database. A CBM is built on the metallurgical principle that one needs to lower relevant solid-state phase transformation (i.e., austenite decomposition) temperatures to improve WM strength and fracture toughness while simultaneously reducing carbon content and Yurioka’s carbon equivalent number (CEN) to improve the weldability of high-strength steels. To this end, a CBM identifies and simultaneously solves several statistical (regression) equations that relate the chemical composition of high-strength steel WM with Yurioka’s CEN and selected solid-state phase transformation temperatures related to austenite decomposition. The results of the current effort demonstrate that the analysis of Evans’s shielded metal arc welding database using a CBM as a framework reaffirms that controlling carbon content, the value of the CEN, and calculated solid-state phase transformation temperatures, particularly the difference between the calculated Bs (bainite-start) and Ms (martensite-start) temperatures, is critical to developing and identifying high-performance, high-strength steel welding electrodes. A dual approach that manipulates the contents of principal alloy elements such as C, Mn, Ni, Cr, Mo, and Cu, and adds controlled amounts of Ti, B, Al, O, and N, appears to offer the best means to lower relevant solid-state phase transformation temperatures to produce high-strength and high-toughness WMs.


Author(s):  
L. Bumke ◽  
N. Wolff ◽  
C. Chluba ◽  
T. Dankwort ◽  
L. Kienle ◽  
...  

AbstractSputtered Ti–rich TiNiCu alloys are known to show excellent cyclic stability. Reversibility is mostly influenced by grain size, crystallographic compatibility and precipitates. Isolating their impact on cyclic stability is difficult. Ti2Cu precipitates for instance are believed to enhance reversibility by showing a dual epitaxy with the B2 and B19 lattice. Their influence on the functional fatigue, if they partly lose the coherency is still unknown. In this study, sputtered Ti53.7Ni24.7Cu21.6 films have been annealed at different temperatures leading to a similar compatibility (λ2 ~ 0.99), grain size and thermal cyclic stability. Films annealed at 550 °C exhibit a superior superelastic fatigue resistance but with reduced transformation temperatures and enthalpies. TEM investigations suggest the formation of Guinier–Preston (GP) zone-like plate precipitates and point towards a coherency relation of the B2 phase and finely distributed Ti2Cu precipitates (~ 60 nm). Films annealed at 700 °C result in the growth of Ti2Cu precipitates (~ 280 nm) with an irregular distribution and a partial loss of their coherency. Thus, GP zones are assumed to cause the reduction of transformation temperatures and enthalpies due to increased internal stresses, whereas the coherency relation of both, Ti2Cu and GP zones, help to increase the superelastic stability, well beyond 107 cycles.


Author(s):  
Christian Rowolt ◽  
Benjamin Milkereit ◽  
Jette Broer ◽  
Armin Springer ◽  
Olaf Kessler

AbstractBinary NiTi alloys are the most common shape memory alloys in medical applications, combining good mechanical properties and high biocompatibility. In NiTi alloys, the shape memory effect is caused by the transformation of an austenite phase to a martensite phase and the reverse process. Transformation temperatures are strongly influenced by the exact chemical composition of the NiTi phase and the presence of precipitates in the microstructure induced by thermo-mechanical treatment, especially solution annealing and ageing. Isothermal time–temperature precipitation diagrams can be found in the literature. Cooling is frequently not considered, as water quenching is typically assumed to be sufficient. To the best of our knowledge, continuous heating dissolution (CHD) and continuous cooling precipitation (CCP) diagrams do not exist. Differential scanning calorimetry (DSC) is a common method to analyse the austenite/martensite transformation in shape memory alloys, but it has not yet been used to analyse precipitation processes during continuous temperature changes. We have enabled DSC to analyse dissolution and precipitation processes in situ during heating as well as during cooling from the solution annealing temperature. Results are presented as CHD and CCP diagrams, including information from microstructure analysis and the associated changes in the austenite/martensite transformation temperatures.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Khoa Van Pham

Abstract Background The transformation temperatures were important values, influencing the mechanical properties and clinical performance of nickel-titanium instruments. The aim of this study was to determine the transformation temperatures of three rotary nickel-titanium (NiTi) instruments: Reciproc, HyFlex CM Pro, and Neoniti before and after simulated clinical uses. Methods Ninety new NiTi instruments of three single-file instruments: Reciproc, HyFlex CM Pro, and Neoniti were divided into three groups. Thirty instruments of each group were divided into 3 subgroups (10 instruments for each subgroup): new, one-time simulated clinical used and sterilised, and three times simulated clinical used and sterilized subgroups. The instruments were in the as-received condition for the new subgroups, one time used in the plastic endo-training blocks and sterilised for the one-time subgroups, and three times used in the plastic endo-training blocks and sterilised for the three times subgroups. Each instrument in subgroups was cut into four small segments of 4–5 mm. All segments of instruments were analysed using Differential Scanning Calorimetry (DSC). Data was collected and analysed using SPSS version 20.0 with ANOVA test or Kruskal–Wallis test at the significant level of 0.05. Results There was not significant difference between before and after simulated clinical use with sterilised procedure in three NiTi instrument systems. The austenite-finish (Af) temperatures of three instrument systems were higher than that of the human body (37 °C), of these, the Af temperature of Neoniti was highest and that of HyFlex CM Pro was lowest. Conclusions The austenite-finish (Af) temperatures of three NiTi instruments were higher than that of human body temperature, therefore, material was in the phase transformation from martensite to austenite, gives the instruments more flexibility when used in the clinical situation.


Sign in / Sign up

Export Citation Format

Share Document