The Seismic Response Investigation on the Multi-Storey Buildings with Seismically Insulating Rubber-Metal Supports

2018 ◽  
Vol 931 ◽  
pp. 362-367
Author(s):  
Khadjimurad M. Omarov ◽  
Abakar D. Abakarov

The buildings of various constructive solutions with seismic isolation and without seismic isolation are considered. The system of differential equations of a multi-storey building motion with seismic isolating rubber-metal supports is presented. The graphs of the seismic response of 5, 9 and 12-storey buildings with seismic insulating rubber-metal bearings are obtained as well as with seismic action in the form of the unsteady random process. The effectiveness of seismic isolation systems with rubber-metal bearings with lead core and without it is estimated.

Author(s):  
Akihito Otani ◽  
Teruyoshi Otoyo ◽  
Hideo Hirai ◽  
Hirohide Iiizumi ◽  
Hiroshi Shimizu ◽  
...  

This paper, which is part of the series entitled “Development of an Evaluation Method for Seismic Isolation Systems of Nuclear Power Facilities”, shows the linear seismic response of crossover piping installed in a seismically isolated plant. The crossover piping, supported by both isolated and non-isolated buildings, deforms with large relative displacement between the two buildings and the seismic response of the crossover piping is caused by two different seismic excitations from the buildings. A flexible and robust structure is needed for the high-pressure crossover piping. In this study, shaking tests on a 1/10 scale piping model and FEM analyses were performed to investigate the seismic response of the crossover piping which was excited and deformed by two different seismic motions under isolated and non-isolated conditions. Specifically, as linear response analysis of the crossover piping, modal time-history analysis and response spectrum analysis with multiple excitations were carried out and the applicability of the analyses was confirmed. Moreover, the seismic response of actual crossover piping was estimated and the feasibility was evaluated.


Author(s):  
Tatiana A. Belash ◽  
Elizaveta D. Erokhina

The change in the level of seismicity of buildings and structures occurs as a result of updating the maps of general seismic zoning. Ensuring the seismic resistance of buildings and structures is a factor that must be taken into account, especially during construction in seismically active regions. Nowadays, one of the main approaches to increasing seismic resistance is the use of various seismic isolation systems. It is not always profitable and rational to increase the seismic resistance of building structures or foundations for equipment by simply increasing the strength. A classification of seismic reinforcement systems is given, among which the most sparing are special methods of seismic protection in the form of seismic isolation. Practical examples of the use of seismic isolation systems to improve the seismic resistance of existing buildings are given. A computational study was carried out, the result of which showed the effectiveness of using rubber-metal supports for hanging the seismic resistance of buildings.


Author(s):  
Tynymbek O. Ormonbekov ◽  
Ulugbek T. Begaliev

The purpose of the present work is the analysis of existing methods of seismoisolation in the Kyrgyz Republic at which 95% of territory has seismically active zone with intensity 8, 9 and more. Also an opportunity of application of system seismic protection as rubber-metal bearings.


2004 ◽  
Vol 11 (1) ◽  
pp. 33-45 ◽  
Author(s):  
M.B. Jadhav ◽  
R.S. Jangid

Seismic response of liquid storage tanks isolated by elastomeric bearings and sliding system is investigated under real earthquake ground motions. The continuous liquid mass of the tank is modeled as lumped masses known as sloshing mass, impulsive mass and rigid mass. The coupled differential equations of motion of the system are derived and solved in the incremental form using Newmark's step-by-step method with iterations. The seismic response of isolated tank is studied to investigate the comparative effectiveness of various isolation systems. A parametric study is also carried out to study the effect of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) aspect ratio of the tank and (ii) the time period of the isolation systems. It was observed that both elastomeric and sliding systems are found to be effective in reducing the earthquake forces of the liquid storage tanks. However, the elastomeric bearing with lead core is found to perform better in comparison to other systems. Further, an approximate model is proposed for evaluation of seismic response of base-isolated liquid storage tanks. A comparison of the seismic response evaluated by the proposed approximate method and an exact approach is made under different isolation systems and system parameters. It was observed that the proposed approximate analysis provides satisfactory response estimates of the base-isolated liquid storage tanks under earthquake excitation.


Sign in / Sign up

Export Citation Format

Share Document