Clinical Trial of a Novel Starch-Based Adhesive Bandages for Medical Dressing

2020 ◽  
Vol 990 ◽  
pp. 96-100
Author(s):  
Sittiporn Punyanitya ◽  
Banyong Khantawa ◽  
Sakdiphon Thiansem ◽  
Rungsarit Koonawoot ◽  
Phanlob Chankachang ◽  
...  

A typical adhesive bandage comprises of four main parts; the backing is often made of plastic; the adhesive sheet is usually plastic; the adhesive is commonly acrylate; the absorbent pad is often made of cotton. This adhesive bandages are made from starch based adhesive and natural paper, which have no plastic components. A starch-based adhesive bandages are tested on 100 volunteers and the result shows good performances with high confident of safety and efficacy. The raw materials and preparation methods are low cost, easily reproducible and eco-friendly, according to the international standards of medical devices regulation.

JMS SKIMS ◽  
2017 ◽  
Vol 20 (1) ◽  
pp. 5-17
Author(s):  
Haroon Rashid

Clinical trials are the only way of establishing the safety and efficacy of any new drug before its introduction in the market for human use. Clinical trials (with safeguards) are necessary for introduction of new drugs for a country like India, considering its disease burden and emergence of new variants of disease.The regulatory bodies need to frame guidelines and regulatory approval processes on a par with international standards. Many of the new laws, guidance documents, notifications and initiatives for regulating pharmaceutical industry were in the charts for quite a long time. Indian regulatory authorities have started looking into speedy implementation and providing support in terms ofnecessary infrastructure and investment. JMS 2017; 20(1):5-17


2019 ◽  
Vol 807 ◽  
pp. 159-164
Author(s):  
Yuan Ze Ma ◽  
Xiu Xia Zhang ◽  
Rong Fan

Due to the developed pore structure ,high specific surface area, low cost, accessible raw materials and stable physical and chemical properties, activated carbon has caused high attention of society. Nowadays activated carbon has been widely used in capacitor electrode production, water pollution treatment, medicine and other fields. We review the various preparation methods of activated carbon and analyze the advantages and disadvantages of them in this paper. The characteristics of activated carbon regeneration technology are also discussed from the perspective of improving the utilization rate of activated carbon. With the development of China's green economy and the increasing awareness of people's environmental protection, the research on the preparation and regeneration of activated carbon will surely have a broader development prospect.


2021 ◽  
Vol 10 (2) ◽  
pp. 291-300
Author(s):  
Zhilei Wei ◽  
Kang Li ◽  
Bangzhi Ge ◽  
Chaowei Guo ◽  
Hongyan Xia ◽  
...  

AbstractSpherical AlN powders with micrometer size have attracted great attention owing to their good fluidity and dispersity. However, the industrial preparation methods usually require high temperature and long soaking time, which lead to the high cost and limit the wide application of the products. Herein, nearly spherical AlN particles with the average size of 2.5 µm were successfully synthesized via an in-situ combustion synthesis method. The effect of N2 pressure, NH4Cl content, and Al particle size on the combustion reaction procedure, phase composition, and microstructure of the products was systematically investigated. The results showed that the decreased N2 pressure, increased NH4Cl content, and Al particle size led to the decreasing of combustion temperature and speed, which further affected the morphology of the products. As a result, low N2 pressure (0.2 MPa), a small amount of NH4Cl (0.5 wt%), and fine Al particles (∼2.5 µm) contributed to a moderate combustion temperature and facilitated the formation of nearly spherical AlN particles. In addition, based on the gas-releasing assisted quenching experiments and thermo-kinetic analysis, a two-step growth mechanism for the nearly spherical AlN particles was rationally proposed. The present method shows the advantages of low cost and high efficiency for preparing nearly spherical AlN particles, which can be used as raw materials for electronic substrates and fillers for packaging materials.


2020 ◽  
Author(s):  
Zhilei Wei ◽  
Kang Li ◽  
Bangzhi Ge ◽  
Chaowei Guo ◽  
Hongyan Xia ◽  
...  

Abstract Spherical AlN powders with micrometer size have attracted great attention owing to their good fluidity and dispersity. However, the industrial preparation methods usually require high temperature and long soaking time, which lead to the high cost and limit the wide application of the products. Herein, nearly spherical AlN particles with the average size of 2.5 μm were successfully synthesized via an in-situ combustion synthesis method. The effect of N 2 pressure, NH 4 Cl content and Al particle size on the combustion reaction procedure, phase composition and microstructure of the products was systematically investigated. The results showed that the decreased N 2 pressure, increased NH 4 Cl content and Al particle size led to the decreasing of combustion temperature and speed, which further affected the morphology of the products. As a result, low N 2 pressure (0.2 MPa), a small amount of NH 4 Cl (0.5 wt%) and fine Al particles (~2.5 μm) contributed to a moderate combustion temperature and facilitated the formation of nearly spherical AlN particles. In addition, based on the gas-releasing assisted quenching experiments and thermo-kinetic analysis, a two-step growth mechanism for the nearly spherical AlN particles was rationally proposed. The present method shows the advantages of low cost and high efficiency for preparing nearly spherical AlN particles, which can be used as raw materials for electronic substrates and fillers for packaging materials.


2020 ◽  
Author(s):  
Zhilei Wei ◽  
Kang Li ◽  
Bangzhi Ge ◽  
Chaowei Guo ◽  
Hongyan Xia ◽  
...  

Abstract Spherical AlN powders with micrometer size have attracted great attention owing to their good fluidity and dispersity. However, the industrial preparation methods usually require high temperature and long soaking time, which lead to the high cost and limit the wide application of the products. Herein, nearly spherical AlN particles with the average size of 2.5 µm were successfully synthesized via an in-situ combustion synthesis method. The effect of N2 pressure, NH4Cl content and Al particle size on the combustion reaction procedure, phase composition and microstructure of the products was systematically investigated. The results showed that the decreased N2 pressure, increased NH4Cl content and Al particle size led to the decreasing of combustion temperature and speed, which further affected the morphology of the products. As a result, low N2 pressure (0.2 MPa), a small amount of NH4Cl (0.5 wt%) and fine Al particles (~ 2.5 µm) contributed to a moderate combustion temperature and facilitated the formation of nearly spherical AlN particles. In addition, based on the gas-releasing assisted quenching experiments and thermo-kinetic analysis, a two-step growth mechanism for the nearly spherical AlN particles was rationally proposed. The present method shows the advantages of low cost and high efficiency for preparing nearly spherical AlN particles, which can be used as raw materials for electronic substrates and fillers for packaging materials.


Sign in / Sign up

Export Citation Format

Share Document