Revisiting Local Electric Fields on Close-Packed Metal Surfaces: Theory Versus Experiments

2007 ◽  
Vol 128 ◽  
pp. 219-224 ◽  
Author(s):  
P.P. Kostrobiy ◽  
Bogdan M. Markovych ◽  
Yuri Suchorski

An external electrostatic field of the order of a few tens of a volt per nanometer causes significant changes in the electron density distribution near a metal surface. Because of differing electronic distributions and varying responses of electrons to the applied field for various metals, the resulting local field distribution in the close vicinity of the surface should depend on the electronic properties of the particular metal, even for flat surfaces. Field-free and field-modified electron density distributions for different metal surfaces were calculated using the functional integration method. This approach enables the exchange-correlation effects to be correctly considered and makes it possible to account for the proper field-effect for broad field ranges without using the perturbation theory. The results of calculations are compared with the field-ion microscopic observations.

2003 ◽  
Vol 118 (3) ◽  
pp. 1044-1053 ◽  
Author(s):  
M. van Faassen ◽  
P. L. de Boeij ◽  
R. van Leeuwen ◽  
J. A. Berger ◽  
J. G. Snijders

1963 ◽  
Vol 18 (8-9) ◽  
pp. 895-900
Author(s):  
Franz Peter Küpper

In a θ-pinch the radial symmetry of the electron density distribution as a function of time has been measured by a MACH—ZEHNDER interferometer. In a time interval of 400 nsec during a discharge an image converter made three pictures (exposure times of 10 nsec each) . Up to 100 nsec after the first compression, the experimental results show different density distributions for the cases of trapped parallel and antiparallel magnetic fields. Complete radial symmetry of the electron density distribution was not found.Another interferometric method for measuring the radial symmetry of the electron distribution by observing “zero order” fringes is described.


Sign in / Sign up

Export Citation Format

Share Document