Microstructural Characterization of Thermal Barrier Coatings Deposited by APS and LPPS Thin Film Methods

2013 ◽  
Vol 197 ◽  
pp. 1-5 ◽  
Author(s):  
Marek Góral ◽  
Maciej Pytel ◽  
Pawel Sosnowy ◽  
Slawomir Kotowski ◽  
Marcin Drajewicz

In the paper first results of TBCs deposition by LPPS-Thin Film method were presented. The LPPS-Thin Film is a new type of processes for deposition of thermal barrier coatings. In this method deposition of thin ceramic layer in very low pressure is possible as well as coatings with columnar structure (in plasma spraying-physical vapour deposition process). The MeCrAlY bond coats were deposited by APS method. The overaluminising by CVD method of conventional MeCrAlY was also conducted. The analysis of microstructure of both type bond coats as well as outer ceramic layer were presented using light and scanning electron microscopy methods. Results of EDS microanalysis showed the increasing of aluminum content in outer zone of overaluminized MeCrAlY coating. In ceramic layer the columnar structure were observed which was connected with powder evaporation during plasma spraying. The new type of MeCrAlY-NiAl bondcoat could increase the oxidation of TBCs deposited by LPPS Thin Film method.

2021 ◽  
Vol 320 ◽  
pp. 31-36
Author(s):  
Marek Góral ◽  
Tadeusz Kubaszek ◽  
Barbara Kościelniak ◽  
Marcin Drajewicz ◽  
Mateusz Gajewski

Thermal barrier coatings are widely used for protection of gas turbine parts against high temperature oxidation and hot corrosion. In present work the microstructural assessment of TBCs produced by atmospheric plasma spray (APS) method was conducted. Three types of ceramic powders were used: magnesia- stabilized zirconia oxide (Metco 210), yttria stabilized zirconia oxide (YSZ -Metco 204) and fine-grained YSZ – Metco 6700. As a base material the Inconel 713 was used as well and CoNiCrAlY was plasma sprayed (APS) as a bond coat. The thickness of all ceramic layers was in range 80 – 110 μm. The elemental mapping of cross-section of magnesia-stabilized zirconia showed the presence of Mg, Zr and O in outer layer. In the YSZ ceramic layer the Y, Zr and O were observed during elemental mapping. The isothermal oxidation test was conducted at 1100 °C for 500 h in static laboratory air. On all samples the delamination and spallation of ceramic layers was observed. Chemical composition analysis of coatings showed the presence of two areas: the first one contained elements from bond coats: Ni, Cr, Al, Co and second area contained O, Cr Co and O that suggest the scale formation. The obtained results showed the total degradation of all ceramic layers as a result of internal stresses in bond-coat. Microscopic analysis showed the areas with complete degradation of bond coats and formation of thick oxides layer.


2012 ◽  
Vol 706-709 ◽  
pp. 2412-2417 ◽  
Author(s):  
Marek Góral ◽  
Stanislaw Dudek ◽  
Ryszard Filip ◽  
Jan Sieniawski

Thermal Barrier Coatings are the main type of coatings used for protecting turbine blade surfaces and the surface of modern jet engines combustion chamber parts. Depending on the type of engine element, the coatings are produced as plasma-sprayed MeCrAlY bond-coats with a ceramic outer layer or as Pt-modified aluminide coatings with a ceramic EB-PVD-deposited layer. Currently, research is being conducted on the deposition of a new type of coatings consisting of bond-coats with mulitlayer structure. In the article, the results of the study on the obtainment of TBC's with multilayer structure are presented. To obtain the metallic bond-coat, the process of atmospheric plasma spraying and the out of pack aluminizing (VPA) method were combined. The coatings were deposited on the surface of Rene 80 nickel superalloy. The first layer of the coating was a plasma-sprayed MCrAlY bond-coat, on which a diffusion aluminide layer was deposited with out of pack method. On the bond-coat, a standard ceramic zirconium oxide (ZrO2*20Y2O3) layer was deposited. The microstructure analysis, was conducted, using light and SEM microscopy. The phase and chemical composition analyses were done using EDS and XRD methods.


2015 ◽  
Vol 227 ◽  
pp. 333-336
Author(s):  
Marek Góral ◽  
Maciej Pytel ◽  
Wojciech Cmela ◽  
Sławomir Kotowski

The paper presents results of research into thermal barrier coatings characterized by high oxidation resistance and hot corrosion. Bondcoats were formed by overaluminizing of an MeCrAlY–type coating deposited by low pressure plasma spraying. The outer ceramic layer of yttrium oxide stabilized zirconia oxide (Metco 6700) was deposited by plasma spray physical vapour deposition (PS-PVD). For comparison purposes additionally LPPS-sprayed were MeCrAlY bondcoats, which were not subsequently aluminized. Used as base material was Rene 80 nickel superalloy. The research has shown that as a result of aluminizing by the CVD method there was formed in the bondcoat a deposit zone built of the β-NiAl phase which protects from oxidation. Preserved below increased chromium content ensures resistance to hot corrosion. The outer ceramic layer was characterized by columnar structure similar to that obtained in the EB-PVD process.


Sign in / Sign up

Export Citation Format

Share Document