Application of a Digital Strain Analyzer AutoGrid at Thin Sheet Metals Mechanical Characteristics Preparation and Assessment of their Drawability
The paper presents the results of mechanical properties testing of thin sheet metal of INCONEL 625 and 718 alloys. These studies are a continuation of experience in the preparation of the technological characteristics of metal strips plasticity necessary for carrying out numerical simulations [1]. In order to process sheets now become necessary to design the process using software such as thermo-mechanical simulation e.g. Eta/DYNAFORM. On the road of numerical simulation are sought optimal conditions for processing sheets. It brings reducing the cost of industrial tests. However, becomes strictly necessary characteristics of mechanical and technological properties describing the characteristics of the charges for forming. Here the problem is solved if we forming limit curves (FLCs) designated and technological tests conducted. Using the FLCs is comprehensively defined stamping sheet metal press formability and technological tests allow the mapping of the actual operating conditions selected stamping operations. In the presented study used modern digital analyzer AutoGrid of local deformations and the method of image analysis of deformed mesh subdivision. The use of mesh analyzer and vision systems method significantly speeds up the possibility of producing FLCs. Also measurement accuracy is very high. Selected Inconel alloys are evaluated quantitatively and qualitatively by preparing their properties characterization. The acquired data entered into the database material properties of sheet metal and used in the numerical simulation of stamping process of Inconel 625 cone drawpiece. The legitimacy of the use of modern strain analyzer AutoGrid has been confirmed.