Comparison of the Experimental Results of the Calculation for Various Models of the Energy Parameter

2016 ◽  
Vol 250 ◽  
pp. 127-132
Author(s):  
Ewa Marcisz ◽  
Dariusz Rozumek

The paper presents results of fatigue life tests conducted on transverse, circular and square cross-section specimens of C45 steel with controlled amplitude of energy parameter. The experimental results were compared with results obtained from computations on energy parameter models by R. Pawliczek, C. T. Lachowicz and on the linear-elastic model.

2015 ◽  
Vol 1088 ◽  
pp. 750-757
Author(s):  
Andrea Cressoni de Conti ◽  
Cláudio de Conti

This study analyzed the bond line strength of Eucalyptus sp. specimens submitted to shear and perpendicular to grain tensile forces, depending on the wood quality machined surface. The woods plans were glued with two different polyvinyl acetate adhesives. The bonding surfaces were milling with three different feed speeds; 6.0, 11.0 and 15.0 m/min, corresponding to the feed per tooth of the cutting tool; 0.86, 1.57 and 2.14 mm, respectively. The specimen types corresponded to the standards according to ABNT NBR 7190/1997. The cutting plane considered only the geometry of milling due to the bond line joint strength. To explain the experimental results, was proposed a linear elastic model to machined wood and bond line. For the two adhesives used, the experimental results suggest that the greatest perpendicular to grain tensile strength and shear strength were obtained to bond surface machined with the intermediate feed speed namely 11 m/min, for others two feed speeds and in the shear strength case, was not observed a distinction between them, in the perpendicular to grain tensile strength, the feed speed 6.0 m/min presented a higher strength than the machined surface with 15.0 m/min. The model reproduces the behavior of the experimentally results obtained for the two tests, and so it can be readily applied as a tool for evaluate the machining feed speed and the bond line joint strength.


2018 ◽  
Vol 5 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Hong Liu ◽  
Hanlong Liu ◽  
Yang Xiao ◽  
Qingsheng Chen ◽  
Yufeng Gao ◽  
...  

2017 ◽  
Vol 86 (6) ◽  
pp. 365-391 ◽  
Author(s):  
Michael Herty ◽  
Siegfried Müller ◽  
Nils Gerhard ◽  
Gaoming Xiang ◽  
Bing Wang

Author(s):  
Onome Scott-Emuakpor ◽  
Tommy George ◽  
Charles Cross ◽  
M.-H. Herman Shen

An energy-based method for predicting fatigue life of half-circle notched specimens, based on the nominal applied stress amplitude, has been developed. This developed method is based on the understanding that the total strain energy dissipated during a monotonic fracture and a cyclic process is the same material property, where the density of each can be determined by measuring the area underneath the monotonic true stress-strain curve and measuring the sum of the area within each Hysteresis loop in the cyclic process, respectively. Using this understanding, the criterion for determining fatigue life prediction of half-circle notched components is constructed by incorporating the stress gradient effect through the notch root cross-section. Though fatigue at a notch root is a local phenomenon, evaluation of the stress gradient through the notch root cross-section is essential for incorporating this method into finite element analysis minimum potential energy process. The validation of this method was carried out by comparison with both notched and unnnotched experimental fatigue life of Aluminum 6061-T6 (Al 6061-T6) specimens under tension/compression loading at the theoretical notch fatigue stress concentration factor of 1.75. The comparison initially showed a slight deviation between prediction and experimental results. This led to the analysis of strain energy density per cycle up to failure, and an improved Hysteresis representation for the energy-based prediction analysis. With the newly developed Hysteresis representation, the energy-based prediction comparison shows encouraging agreement with unnotched experimental results and a theoretical notch stress concentration value.


2009 ◽  
Vol 627 ◽  
pp. 291-322 ◽  
Author(s):  
GAURAV ◽  
V. SHANKAR

The linear stability of fully developed Poiseuille flow of a Newtonian fluid in a deformable neo-Hookean tube is analysed to illustrate the shortcomings of extrapolating the linear elastic model for the tube wall outside its domain of validity of small strains in the solid. We show using asymptotic analyses and numerical solutions that a neo-Hookean description of the solid dramatically alters the stability behaviour of flow in a deformable tube. The flow-induced instability predicted to exist in the creeping-flow limit based on the linear elastic approximation is absent in the neo-Hookean model. In contrast, a new low-wavenumber (denoted by k) instability is predicted in the limit of very low Reynolds number (Re ≪ 1) with k ∝ Re1/2 for purely elastic (with ratio of solid to fluid viscosities ηr = 0) neo-Hookean tubes. The first normal stress discontinuity in the neo-Hookean solid gives rise to a high-wavenumber interfacial instability, which is stabilized by interfacial tension at the fluid–wall interface. Inclusion of dissipation (ηr ≠ 0) in the solid has a stabilizing effect on the low-k instability at low Re, and the critical Re for instability is a sensitive function of ηr. For Re ≫ 1, both the linear elastic extrapolation and the neo-Hookean model agree qualitatively for the most unstable mode, but show disagreement for other unstable modes in the system. Interestingly, for plane-Couette flow past a deformable solid, the results from the extrapolated linear elastic model and the neo-Hookean model agree very well at any Reynolds number for the most unstable mode when the wall thickness is not small. The results of this study have important implications for experimental investigations aimed at probing instabilities in flow through deformable tubes.


Sign in / Sign up

Export Citation Format

Share Document