Existence and Convergence Questions in Computational Modelling of Crack Growth in Brittle and Quasi-Brittle Materials

2016 ◽  
Vol 258 ◽  
pp. 157-160 ◽  
Author(s):  
Jiří Vala

Computational modelling of the crack growth in brittle and quasi-brittle materials used in mechanical, civil, etc. engineering applies the cohesive zone model with various traction separation laws; determination of micro-mechanical parameters comes then from static tests, microscopic observation and numerical calibration. Although most authors refer to ill-possedness and need of artificial regularization in inverse problems (identification of material parameters), some difficulties originate even in nonlinear formulations of direct and sensitivity problems. This paper demonstrates the possibility of proper analysis of the existence of a weak solution and of the convergence of a corresponding numerical algorithm for such model problem, avoiding non-physical assumptions.

2020 ◽  
Vol 110 ◽  
pp. 102804
Author(s):  
M. Mohajer ◽  
M. Bocciarelli ◽  
P. Colombi ◽  
A. Hosseini ◽  
A. Nussbaumer ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Huan Li ◽  
Jinshan Li ◽  
Huang Yuan

A cyclic cohesive zone model is applied to characterize the fatigue crack growth behavior of a IN718 superalloy which is frequently used in aerospace components. In order to improve the limitation of fracture mechanics-based models, besides the predictions of the moderate fatigue crack growth rates at the Paris’ regime and the high fatigue crack growth rates at the high stress intensity factor ΔK levels, the present work is also aimed at simulating the material damage uniformly and examining the influence of the cohesive model parameters on fatigue crack growth systematically. The gradual loss of the stress-bearing ability of the material is considered through the degradation of a novel cohesive envelope. The experimental data of cracked specimens are used to validate the simulation result. Based on the reasonable estimation for the model parameters, the fatigue crack growth from moderate to high ΔK levels can be reproduced under the small-scale yielding condition, which is in fair agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document