scholarly journals Fruit rot disease in butternut squash caused by Pythium aphanidermatum in Trincomalee district, Sri Lanka

2020 ◽  
Vol 49 (5) ◽  
pp. 373
Author(s):  
P. Sevvel ◽  
D. Kugathasan ◽  
C. J. Emmanuel
2018 ◽  
Vol 52 (6) ◽  
pp. 543-549
Author(s):  
Pongphen Jitareerat ◽  
Kanlaya Sripong ◽  
Kato Masaya ◽  
Sukanya Aiamla-or ◽  
Apiradee Uthairatanakij

Plant Disease ◽  
2016 ◽  
Vol 100 (11) ◽  
pp. 2333 ◽  
Author(s):  
T. Thomidis ◽  
A. Zambounis ◽  
I. Prodromou
Keyword(s):  

Author(s):  
S. Nizamani ◽  
A. A. Khaskheli ◽  
A. M. Jiskani ◽  
S. A. Khaskheli ◽  
A. J. Khaskheli ◽  
...  

Background: The post-harvest tomato fruit rot disease is common threat to the tomato fruit, causing huge economic loss as revealed by (GOP, 2018). The present study was conducted for isolatation and identification of causative agent of tomato fruit rot in order to formulate the proper management stretegies. Methods: Study was conducted in three phases. Phase one included collection of tomato fruit samples from vicinity of Tandojam. In phase two pathogens were isolated from the samples at laboratory, while in the phase three pathogens were identified using standard procedures. Result: The experimental results indicated Alternaria solani as the main cause of post-harvest tomato fruit rot. The symptoms observed were presence of brown to black rot lesions on tomato fruits with distinct rings ranging from small pin-heads to whole surface of fruit. A total of six different fungi viz., Alternaria alternata, Aspergillus niger, Alternaria solani, Geotrichum candidum, Fusarium oxysporum and Rhizopus stolonifer were found to be associated with post harvest tomato rot. Significantly higher infection was recorded for A. solani (53.667%) followed by A. niger (16.333%) and G. candidum (13.00%). The lowest infection percentage was observed for F. oxysporum (2.333%), followed by A. alternata (4.00%) and R. stolonifer (9.00%). A. solani produced aerial mycelium with yellowish to reddish diffusible pigments. A. niger cultures were typically black and colonies were initially whitish to yellow and later became brown to black in colour. G. candidum produced white and nonaerial colonies. F. oxysporum produced circular, aerial mycelium initially white, later changed to light pink. R. stolonifer produced whitish to grey fuzzy colonies.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhou Zhang ◽  
Zheng Bing Zhang ◽  
Yuan Tai Huang ◽  
FeiXiang Wang ◽  
Wei Hua Hu ◽  
...  

Peach [Prunus persica (L.) Batsch] is an important deciduous fruit tree in the family Rosaceae and is a widely grown fruit in China (Verde et al., 2013). In July and August 2018, a fruit rot disease was observed in a few peach orchards in Zhuzhou city, the Hunan Province of China. Approximately 30% of the fruit in more than 400 trees was affected. Symptoms displayed were brown necrotic spots that expanded, coalesced, and lead to fruit being rotten. Symptomatic tissues excised from the margins of lesions were surface sterilized in 70% ethanol for 10 s, 0.1% HgCl2 for 2 min, rinsed with sterile distilled water three times, and incubated on potato dextrose agar (PDA) at 26°C in the dark. Fungal colonies with similar morphology developed, and eight fungal colonies were isolated for further identification. Colonies grown on PDA were grayish-white with white aerial mycelium. After an incubation period of approximately 3 weeks, pycnidia developed and produced α-conidia and β-conidia. The α-conidia were one-celled, hyaline, fusiform, and ranged in size from 6.0 to 8.4 × 2.1 to 3.1 μm, whereas the β-conidia were filiform, hamate, and 15.0 to 27.0 × 0.8 to 1.6 μm. For molecular identification, total genomic DNA was extracted from the mycelium of a representative isolate HT-1 and the internal transcribed spacer region (ITS), β-tubulin gene (TUB), translation elongation factor 1-α gene (TEF1), calmodulin (CAL), and histone H3 gene (HIS) were amplified and sequenced (Meng et al. 2018). The ITS, TUB, TEF1, CAL and HIS sequences (GenBank accession nos. MT740484, MT749776, MT749778, MT749777, and MT749779, respectively) were obtained and in analysis by BLAST against sequences in NCBI GenBank, showed 99.37 to 100% identity with D. hongkongensis or D. lithocarpus (the synonym of D. hongkongensis) (Gao et al., 2016) (GenBank accession nos. MG832540.1 for ITS, LT601561.1 for TUB, KJ490551.1 for HIS, KY433566.1 for TEF1, and MK442962.1 for CAL). Pathogenicity tests were performed on peach fruits by inoculation of mycelial plugs and conidial suspensions. In one set, 0.5 mm diameter mycelial discs, which were obtained from an actively growing representative isolate of the fungus on PDA, were placed individually on the surface of each fruit. Sterile agar plugs were used as controls. In another set, each of the fruits was inoculated by application of 1 ml conidial suspension (105 conidia/ml) by a spray bottle. Control assays were carried out with sterile distilled water. All treatments were maintained in humid chambers at 26°C with a 12-h photoperiod. The inoculation tests were conducted twice, with each one having three fruits as replications. Six days post-inoculation, symptoms of fruit rot were observed on inoculated fruits, whereas no symptoms developed on fruits treated with agar plugs and sterile water. The fungus was re-isolated and identified to be D. hongkongensis by morphological and molecular methods, thus fulfilling Koch’s Postulates. This fungus has been reported to cause fruit rot on kiwifruit (Li et al. 2016) and is also known to cause peach tree dieback in China (Dissanayake et al. 2017). However, to our knowledge, this is the first report of D. hongkongensis causing peach fruit rot disease in China. The identification of the pathogen will provide important information for growers to manage this disease.


2000 ◽  
Vol 3 (3) ◽  
pp. 407-410 ◽  
Author(s):  
M.A. Razzaque ◽  
Z.A. Saud ◽  
N. Absar ◽  
M.R. Karim ◽  
F. Hashinaga

2006 ◽  
Vol 7 (1) ◽  
pp. 30 ◽  
Author(s):  
Guido Schnabel ◽  
Wenxuan Chai ◽  
Kerik D. Cox

Summer diseases can cause significant yield losses in processing peach varieties, such as the ‘Babygold’ lines. In this study we identified and characterized the pathogens responsible for disease outbreaks in two orchards (PH and JC) located in the northern ‘Piedmont’ area of South Carolina. Three pathogens, Geotrichum candidum, Colletotrichum acutatum, and Botryosphaeria dothidea, the causal agents of sour rot, anthracnose, and Botryosphaeria fruit rot disease respectively, were identified on fruit from orchard PH using symptomology, culture and spore morphology, and ribosomal DNA analysis. G. candidum and C. acutatum were also isolated from symptomatic fruit from orchard JC. The QoI fungicide azoxystrobin and a mixture of pyraclostrobin and boscalid were evaluated for their in vitro efficacy against five isolates of each of the three pathogens to investigate their possible usefulness in designing management strategies. Azoxystrobin inhibited mycelial growth of C. acutatum isolates (EC50 values of 0.01 to 0.55 mg/liter) but was ineffective against mycelium of G. candidum and B. dothidea isolates (EC50 values >300 mg/liter). The pyraclostrobin-boscalid mixture was highly effective against mycelium of C. acutatum (EC50 values of 0.01 to 0.05 mg/liter) and B. dothidea isolates (EC50 values of 0.02 to 0.03 mg/liter), but only marginally effective against mycelium of G. candidum (EC50 values 15.79 to 39.03 mg/liter). This study provides a diagnostic guide of pathogens that can cause summer diseases on ‘Babygold’ peaches and reports their in vitro sensitivity to registered respiration inhibitor fungicides. Accepted for publication 23 December 2005. Published 1 March 2006.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1467-1475 ◽  
Author(s):  
P. Sikdar ◽  
M. Mazzola ◽  
C. L. Xiao

Phacidiopycnis washingtonensis is the cause of speck rot, a recently reported postharvest fruit rot disease of apple. The pathogen is believed to incite infections in the field, and disease symptoms become evident only during storage. To determine the timing of apple fruit infection in relation to development of speck rot in storage, ‘Red Delicious’ and ‘Fuji’ apple fruit were inoculated in the orchard with P. washingtonensis at different times during the growing season, harvested, and monitored for decay development during storage at 0°C. Fruit inoculated in both field and laboratory also were used to identify the infection courts and mode of apple fruit penetration by P. washingtonensis. In all 3 years, stem-end speck rot and calyx-end speck rot developed during cold storage on fruit inoculated during the growing season, regardless of inoculation time; and the incidence of total speck rot in storage increased as the fruit inoculation time approached harvest. On fruit floral parts, the pathogen colonized sepals at higher rates than stamens. Availability of naturally occurring necrotic tissues favored the colonization of the fungus on sepals. Histological studies indicated that infection occurred through micro-cracks on the surfaces of pedicels and sepals of the fruit, and invasion of these tissues was restricted between the cuticle and epidermis. Findings of this study will assist in the development of effective control strategies for speck rot.


2013 ◽  
pp. 139-144
Author(s):  
P. Jitareerat ◽  
A. Uthairatanakij ◽  
S. Photchanachai ◽  
V. Srilaong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document