Gulf of Mexico Subsidence Monitoring Project with a New Formation Compaction Monitoring Tool

1997 ◽  
Author(s):  
A.J. de Kock ◽  
T.J. Johnson ◽  
T. Hagiwara ◽  
H.A. Zea ◽  
F. Santa
1998 ◽  
Vol 13 (04) ◽  
pp. 223-230 ◽  
Author(s):  
A.J. de Kock ◽  
T.J. Johnson ◽  
Teruhiko Hagiwara ◽  
H.A. Zea ◽  
Fernando Santa

Author(s):  
Jason K. Jolliff ◽  
Sherwin Ladner ◽  
David Lewis ◽  
Ewa Jarosz ◽  
Adam Lawson ◽  
...  

2018 ◽  
Vol 48 (11) ◽  
pp. 2703-2719 ◽  
Author(s):  
Heather Furey ◽  
Amy Bower ◽  
Paula Perez-Brunius ◽  
Peter Hamilton ◽  
Robert Leben

AbstractA new set of deep float trajectory data collected in the Gulf of Mexico from 2011 to 2015 at 1500- and 2500-m depths is analyzed to describe mesoscale processes, with particular attention paid to the western Gulf. Wavelet analysis is used to identify coherent eddies in the float trajectories, leading to a census of the basinwide coherent eddy population and statistics of the eddies’ kinematic properties. The eddy census reveals a new formation region for anticyclones off the Campeche Escarpment, located northwest of the Yucatan Peninsula. These eddies appear to form locally, with no apparent direct connection to the upper layer. Once formed, the eddies drift westward along the northern edge of the Sigsbee Abyssal Gyre, located in the southwestern Gulf of Mexico over the abyssal plain. The formation mechanism and upstream sources for the Campeche Escarpment eddies are explored: the observational data suggest that eddy formation may be linked to the collision of a Loop Current eddy with the western boundary of the Gulf. Specifically, the disintegration of a deep dipole traveling under the Loop Current eddy Kraken, caused by the interaction with the northwestern continental slope, may lead to the acceleration of the abyssal gyre and the boundary current in the Bay of Campeche region.


2020 ◽  
Author(s):  
John S. Armstrong‐Altrin ◽  
Mayla A. Ramos‐Vázquez ◽  
Nadia Y. Hermenegildo‐Ruiz ◽  
Jayagopal Madhavaraju

2014 ◽  
Vol 505 ◽  
pp. 209-226 ◽  
Author(s):  
H Zhang ◽  
DM Mason ◽  
CA Stow ◽  
AT Adamack ◽  
SB Brandt ◽  
...  

2020 ◽  
Vol 644 ◽  
pp. 33-45
Author(s):  
JM Hill ◽  
PS Petraitis ◽  
KL Heck

Salt marshes face chronic anthropogenic impacts such as relative sea level rise and eutrophication, as well as acute disturbances from tropical storms that can affect the productivity of these important communities. However, it is not well understood how marshes already subjected to eutrophication and sea level rise will respond to added effects of episodic storms such as hurricanes. We examined the interactive effects of nutrient addition, sea level rise, and a hurricane on the growth, biomass accumulation, and resilience of the saltmarsh cordgrass Spartina alterniflora in the Gulf of Mexico. In a microtidal marsh, we manipulated nutrient levels and submergence using marsh organs in which cordgrasses were planted at differing intertidal elevations and measured the impacts of Hurricane Isaac, which occurred during the experiment. Prior to the hurricane, grasses at intermediate and high elevations increased in abundance. After the hurricane, all treatments lost approximately 50% of their shoots, demonstrating that added nutrients and elevation did not provide resistance to hurricane disturbance. At the end of the experiment, only the highest elevations had been resilient to the hurricane, with increased above- and belowground growth. Added nutrients provided a modest increase in above- and belowground growth, but only at the highest elevations, suggesting that only elevation will enhance resilience to hurricane disturbance. These results empirically demonstrate that S. alterniflora in microtidal locations already subjected to submergence stress is less able to recover from storm disturbance and suggests we may be underestimating the loss of northern Gulf Coast marshes due to relative sea level rise.


Sign in / Sign up

Export Citation Format

Share Document