mesoscale processes
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ruben Vazquez ◽  
Ivan Parras-Berrocal ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Rafael Mañanes ◽  
...  

AbstractThe Canary current upwelling is one of the major eastern boundary coastal upwelling systems in the world, bearing a high productive ecosystem and commercially important fisheries. The Canary current upwelling system (CCUS) has a large latitudinal extension, usually divided into upwelling zones with different characteristics. Eddies, filaments and other mesoscale processes are known to have an impact in the upwelling productivity, thus for a proper representation of the CCUS and high horizontal resolution are required. Here we assess the CCUS present climate in the atmosphere–ocean regionally coupled model. The regional coupled model presents a global oceanic component with increased horizontal resolution along the northwestern African coast, and its performance over the CCUS is assessed against relevant reanalysis data sets and compared with an ensemble of global climate models (GCMs) and an ensemble of atmosphere-only regional climate models (RCMs) in order to assess the role of the horizontal resolution. The coupled system reproduces the larger scale pattern of the CCUS and its latitudinal and seasonal variability over the coastal band, improving the GCMs outputs. Moreover, it shows a performance comparable to the ensemble of RCMs in representing the coastal wind stress and near-surface air temperature fields, showing the impact of the higher resolution and coupling for CCUS climate modelling. The model is able of properly reproducing mesoscale structures, being able to simulate the upwelling filaments events off Cape Ghir, which are not well represented in most of GCMs. Our results stress the ability of the regionally coupled model to reproduce the larger scale as well as mesoscale processes over the CCUS, opening the possibility to evaluate the climate change signal there with increased confidence.


2021 ◽  
Vol 7 (24) ◽  
pp. eabf8755
Author(s):  
Kaihe Yamazaki ◽  
Shigeru Aoki ◽  
Katsuro Katsumata ◽  
Daisuke Hirano ◽  
Yoshihiro Nakayama

The southern boundary (SB) of the Antarctic Circumpolar Current, the southernmost extent of the upper overturning circulation, regulates the Antarctic thermal conditions. The SB’s behavior remains unconstrained because it does not have a clear surface signature. Revisited hydrographic data from off East Antarctica indicate full-depth warming from 1996 to 2019, concurrent with an extensive poleward shift of the SB subsurface isotherms (>50 km), which is most prominent at 120°E off the Sabrina Coast. The SB shift is attributable to enhanced upper overturning circulation and a depth-independent frontal shift, generally accounting for 30 and 70%, respectively. Thirty years of oceanographic data corroborate the overall and localized poleward shifts that are likely controlled by continental slope topography. Numerical experiments successfully reproduce this locality and demonstrate its sensitivity to mesoscale processes and wind forcing. The poleward SB shift under intensified westerlies potentially induces multidecadal warming of Antarctic shelf water.


2021 ◽  
Vol 28 (2) ◽  
pp. 271-284
Author(s):  
Jia You ◽  
Zhenhua Xu ◽  
Qun Li ◽  
Robin Robertson ◽  
Peiwen Zhang ◽  
...  

Abstract. Turbulent mixing in the ocean interior is mainly attributed to internal wave breaking; however, the mixing properties and the modulation effects of mesoscale environmental factors are not well known. Here, the spatially inhomogeneous and seasonally variable diapycnal diffusivities in the upper Philippine Sea were estimated from Argo float data using a strain-based, fine-scale parameterization. Based on a coordinated analysis of multi-source data, we found that the driving processes for diapycnal diffusivities mainly included the near-inertial waves and internal tides. Mesoscale features were important in intensifying the mixing and modulating of its spatial pattern. An interesting finding was that, besides near-inertial waves, internal tides also contributed significant diapycnal mixing in the upper Philippine Sea. The seasonal cycles of diapycnal diffusivities and their contributors differed zonally. In the midlatitudes, wind mixing dominated and was strongest in winter and weakest in summer. In contrast, tidal mixing was more predominant in the lower latitudes and had no apparent seasonal variability. Furthermore, we provide evidence that the mesoscale environment in the Philippine Sea played a significant role in regulating the intensity and shaping the spatial inhomogeneity of the internal tidal mixing. The magnitudes of internal tidal mixing were greatly elevated in regions of energetic mesoscale processes. Anticyclonic mesoscale features were found to enhance diapycnal mixing more significantly than cyclonic ones.


2021 ◽  
Author(s):  
Ruben Vazquez ◽  
Ivan Parras-Berrocal ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Rafael Mañanes ◽  
...  

Abstract The Canary current upwelling is one of the major eastern boundary coastal upwelling systems in the world, bearing a high productive ecosystem and commercially important fisheries. The Canary current upwelling system (CCUS) has a large latitudinal extension, usually divided into upwelling zones with different characteristics. Eddies, filaments and other mesoscale processes are known to have an impact in the upwelling productivity, thus for a proper representation of the CCUS a large spatial coverage and high horizontal resolution are required. Here we assess the CCUS present climate in the atmosphere-ocean regionally coupled model ROM (REMO-OASIS-MPIOM). ROM presents a global oceanic component with increased horizontal resolution along the northwestern African coast, and its performance over the CCUS is assessed against relevant reanalysis data sets and compared with an ensemble of global climate models (GCMs) and an ensemble of atmosphere-only regional climate models (RCMs) in order to assess the role of the horizontal resolution. ROM reproduces the larger scale pattern of the CCUS and its latitudinal and seasonal variability over the coastal band, improving the GCMs outputs. ROM shows a performance comparable to the ensemble of RCMs in representing the coastal wind stress and near-surface air temperature fields. ROM is able of properly reproducing mesoscale structures, being able to simulate the upwelling filaments events off Cape Ghir, which are not well represented in most of GCMs. Our results stress the ability of ROM to reproduce the larger scale as well as mesoscale processes over the CCUS, opening the possibility to evaluate the climate change signal there with increased confidence.


2021 ◽  
Author(s):  
Jia You ◽  
Zhenhua Xu ◽  
Qun Li ◽  
Peiwen Zhang

<p>Turbulent mixing in the ocean interior is mainly contributed by internal wave breaking; however, the mixing properties and the modulation effects of mesoscale environmental factors are not well-known. Here, the spatially inhomogeneous and seasonally variable diapycnal diffusivities in the upper Philippine Sea were estimated from ARGO float data using a strain-based finescale parameterization. Based on a coordinated analysis of multi-source data, we found that the driving processes for diapycnal diffusivities mainly included the near-inertial waves and internal tides. Mesoscale features were important in intensifying the mixing and modulating its spatial pattern. One interesting finding was that, besides near-inertial waves, internal tides also contributed significant diapycnal mixing for the upper Philippine Sea. The seasonal cycles of diapycnal diffusivities and their contributors differed zonally. In the mid-latitudes, wind-mixing dominated and was strongest in winter and weakest in summer. In contrast, tidal-mixing was more predominant in the lower-latitudes and had no apparent seasonal variability. Furthermore, we provide evidence that the mesoscale environment in the Philippine Sea played a significant role in regulating the intensity and shaping the spatial inhomogeneity of the internal tidal mixing. The magnitudes of internal tidal mixing was greatly elevated in regions of energetic mesoscale processes. The anticyclonic mesoscale features were found to enhance diapycnal mixing more significantly than did cyclonic ones.</p>


2021 ◽  
Author(s):  
Tanvi Gupta ◽  
Somnath Baidya Roy

Abstract. Wind turbines in a wind farm extract energy from the atmospheric flow and convert it into electricity, resulting in a localized momentum deficit in the wake that reduces energy availability for downwind turbines. Atmospheric momentum convergence from above, below and sides into the wakes replenish the lost momentum, at least partially, so that turbines deep inside a wind farm can continue to function. In this study, we explore recovery processes in a hypothetical offshore wind farm with particular emphasis on comparing the spatial patterns and magnitudes of horizontal and vertical recovery processes and understanding the role of mesoscale processes in momentum recovery in wind farms. For this purpose, we use the Weather Research and Forecasting (WRF) model, a state-of-the-art mesoscale model equipped with a wind turbine parameterization, to simulate a hypothetical large offshore wind farm with different wind turbine spacings under realistic initial and boundary conditions. Results show that vertical turbulent transport of momentum from aloft is the main contributor to recovery in wind farms except in cases with strong background winds and high inter-turbine spacing where horizontal advective momentum transport can also contribute equally. Vertical recovery shows a systematic dependence on wind speed and wind farm density that can be quantified using low-order empirical equations. Wind farms significantly alter the mesoscale flow patterns, especially for densely packed wind farms under high wind speed conditions. In these cases, the mesoscale circulations created by the wind farms can transport high momentum air from aloft into the atmospheric boundary layer (ABL) and thus aid in recovery in wind farms. This is a novel study that is one of the first to look at wind farm replenishment processes under realistic meteorological conditions including the role of mesoscale processes. Overall, this study significantly advances our understanding of recovery processes in wind farms and wind farm-ABL interactions.


2021 ◽  
Author(s):  
Jia You ◽  
Zhenhua Xu ◽  
Qun Li ◽  
Robin Robertson ◽  
Peiwen Zhang ◽  
...  

Abstract. Turbulent mixing in the ocean interior is mainly contributed by internal wave breaking; however, the mixing properties and the modulation effects of mesoscale environmental factors are not well-known. Here, the spatially inhomogeneous and seasonally variable diapycnal diffusivities in the upper Philippine Sea were estimated from ARGO float data using a strain-based finescale parameterization. Based on a coordinated analysis of multi-source data, we found that the driving processes for diapycnal diffusivities mainly included the near-inertial waves and internal tides. Mesoscale features were important in intensifying the mixing and modulating its spatial pattern. One interesting finding was that, besides near-inertial waves, internal tides also contributed significant diapycnal mixing for the upper Philippine Sea. The seasonal cycles of diapycnal diffusivities and their contributors differed zonally. In the mid-latitudes, wind-mixing dominated and was strongest in winter and weakest in summer. In contrast, tidal-mixing was more predominant in the lower-latitudes and had no apparent seasonal variability. Furthermore, we provide evidence that the mesoscale environment in the Philippine Sea played a significant role in regulating the intensity and shaping the spatial inhomogeneity of the internal tidal mixing. The magnitudes of internal tidal mixing was greatly elevated in regions of energetic mesoscale processes. The anticyclonic mesoscale features were found to enhance diapycnal mixing more significantly than did cyclonic ones.


Author(s):  
V.A. Gaisky ◽  

The assessment of the feasibility of hydrophysical experiments in typical frequency ranges of variability of random processes with power-law spectra (-5/3), taking into account the reliability and accuracy of measuring instruments and methods of conducting experiments is carried out. It is shown that, at the current level of technology, a non-recoverable system can implement experiments with a probability of 0.95 only for small-scale and mesoscale processes. The requirements for the minimum reliability of the nodes of the probabilistic space-time lattice of measurements for the given parameters of experiments are determined. It is shown that a non-recoverable system with a reliability of 0.99 is realizable only for small-scale and mesoscale processes. It is shown that the experimental error depends on reliability extremely for rough and unreliable systems and monotonically for accurate and reliable systems.


Author(s):  
Yang Yang ◽  
James C. McWilliams ◽  
X. San Liang ◽  
Hong Zhang ◽  
Robert H. Weisberg ◽  
...  

AbstractThe submesoscale energetics of the eastern Gulf of Mexico (GoM) are. diagnosed using outputs from a 1/48° MITgcm simulation. Employed is a recently-developed, localized multiscale energetics formalism with three temporal scale ranges (or scale windows), namely, a background flow window, a mesoscale window, and a submesoscale window. It is found that the energy cascades are highly inhomogeneous in space. Over the eastern continental slope of the Campeche Bank, the submesoscale eddies are generated via barotropic instability, with forward cascades of kinetic energy (KE) following a weak seasonal variation. In the deep basin of the eastern GoM, the submesoscale KE exhibits a seasonal cycle, peaking in winter, maintained via baroclinic instability, with forward available potential energy (APE) cascades in the mixed layer, followed by a strong buoyancy conversion. A spatially-coherent pool of inverse KE cascade is found to extract energy from the submesoscale KE reservoir in this region to replenish the background flow. The northern GoM features the strongest submesoscale signals with a similar seasonality as seen in the deep basin. The dominant source for the submesoscale KE during winter is from buoyancy conversion and also from the forward KE cascades from mesoscale processes. To maintain the balance, the excess submesoscale KE must be dissipated by smaller-scale processes via a forward cascade, implying a direct route to fine-scale dissipation. Our results highlight that the role of submesoscale turbulence in the ocean energy cycle is region- and time-dependent.


Sign in / Sign up

Export Citation Format

Share Document