loggerhead turtles
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 54)

H-INDEX

40
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fanny Girard ◽  
Sidonie Catteau ◽  
Delphine Gambaiani ◽  
Olivia Gérigny ◽  
Jean Baptiste Sénégas ◽  
...  

AbstractClimate-induced environmental changes are profoundly impacting marine ecosystems and altering species distribution worldwide. Migratory organisms, including sea turtles, are expected to be particularly sensitive to these variations. Here, we studied changes in the size structure and reproductive activity of loggerhead turtles in the French Mediterranean over 30 years. Overall, there was a significant increase in the size of observed loggerheads between 1990 and 2020. However, this increase was only significant during the breeding/nesting season (May to September) and was driven by the increased presence of adults. Furthermore, nesting activity along the French coast was detected in 2002 for the first time in more than 50 years, and has become frequent after 2014, with nests discovered every year. The number of eggs laid as well as incubation duration and success varied among sites but fell within the range reported at established Mediterranean nesting sites. These observations, along with recent reports of breeding activity and evidence of significant sea surface warming, suggest that the north-western Mediterranean basin has become increasingly suitable to loggerhead turtles. We postulate that this range expansion is the result of climate change and propose that emerging nesting activity in France should be closely monitored and guarded against human activities.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Jihee Kim ◽  
Il-Hun Kim ◽  
Min-Seop Kim ◽  
Hae Rim Lee ◽  
Young Jun Kim ◽  
...  

Abstract Background Sea turtles, which are globally endangered species, have been stranded and found as bycatch on the Korean shore recently. More studies on sea turtles in Korea are necessary to aid their conservation. To investigate the spatio-temporal occurrence patterns of sea turtles on the Korean shore, we recorded sampling locations and dates, identified species and sexes and measured sizes (maximum curved carapace length; CCL) of collected sea turtles from the year 2014 to 2020. For an analysis of diets through stomach contents, we identified the morphology of the remaining food and extracted DNA, followed by amplification, cloning, and sequencing. Results A total of 62 stranded or bycaught sea turtle samples were collected from the Korean shores during the study period. There were 36 loggerhead turtles, which were the dominant species, followed by 19 green turtles, three hawksbill turtles, two olive ridley turtles, and two leatherback turtles. The highest numbers were collected in the year 2017 and during summer among the seasons. In terms of locations, most sea turtles were collected from the East Sea, especially from Pohang. Comparing the sizes of collected sea turtles according to species, the average CCL of loggerhead turtles was 79.8 cm, of green turtles was 73.5 cm, and of the relatively large leatherback turtle species was 126.2 cm. In most species, the proportion of females was higher than that of males and juveniles, and was more than 70% across all the species. Food remains were morphologically identified from 19 stomachs, mainly at class level. Seaweeds were abundant in stomachs of green turtles, and Bivalvia was the most detected food item in loggerhead turtles. Based on DNA analysis, food items from a total of 26 stomachs were identified to the species or genus level. The gulfweed, Sargassum thunbergii, and the kelp species, Saccharina japonica, were frequently detected from the stomachs of green turtles and the jellyfish, Cyanea nozakii, the swimming crab, Portunus trituberculatus, and kelps had high frequencies of occurrences in loggerhead turtles. Conclusions Our findings support those of previous studies suggesting that sea turtles are steadily appearing in the Korean sea. In addition, we verified that fish and seaweed, which inhabit the Korean sea, are frequently detected in the stomach of sea turtles. Accordingly, there is a possibility that sea turtles use the Korean sea as feeding grounds and habitats. These results can serve as basic data for the conservation of globally endangered sea turtles.


2021 ◽  
Vol 242 ◽  
pp. 106036
Author(s):  
Daisuke Shiode ◽  
Jun Okamoto ◽  
Maika Shiozawa ◽  
Keiichi Uchida ◽  
Yoshinori Miyamoto ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Ian Silver-Gorges ◽  
Jeroen Ingels ◽  
Giovanni A. P. dos Santos ◽  
Yirina Valdes ◽  
Leticia P. Pontes ◽  
...  

Sea turtles are exposed to numerous threats during migrations to their foraging grounds and at those locations. Therefore, information on sea turtle foraging and spatial ecology can guide conservation initiatives, yet it is difficult to directly observe migrating or foraging turtles. To gain insights into the foraging and spatial ecology of turtles, studies have increasingly analyzed epibionts of nesting turtles, as epibionts must overlap spatially and ecologically with their hosts to colonize successfully. Epibiont analysis may be integrated with stable isotope information to identify taxa that can serve as indicators of sea turtle foraging and spatial ecology, but few studies have pursued this. To determine if epibionts can serve as indicators of foraging and spatial ecology of loggerhead turtles nesting in the northern Gulf of Mexico we combined turtle stable isotope and taxonomic epibiont analysis. We sampled 22 individual turtles and identified over 120,000 epibiont individuals, belonging to 34 macrofauna taxa (>1 mm) and 22 meiofauna taxa (63 μm–1 mm), including 111 nematode genera. We quantified epidermis δ13C and δ15N, and used these to assign loggerhead turtles to broad foraging regions. The abundance and presence of macrofauna and nematodes did not differ between inferred foraging regions, but the presence of select meiofauna taxa differentiated between three inferred foraging regions. Further, dissimilarities in macrofauna, meiofauna, and nematode assemblages corresponded to dissimilarities in individual stable isotope values within inferred foraging regions. This suggests that certain epibiont taxa may be indicative of foraging regions used by loggerhead turtles in the Gulf of Mexico, and of individual turtle foraging and habitat use specialization within foraging regions. Continued sampling of epibionts at nesting beaches and foraging grounds in the Gulf of Mexico and globally, coupled with satellite telemetry and/or dietary studies, can expand upon our findings to develop epibionts as efficient indicators of sea turtle foraging and spatial ecology.


2021 ◽  
Vol 168 (6) ◽  
Author(s):  
Josie L. Palmer ◽  
Damla Beton ◽  
Burak A. Çiçek ◽  
Sophie Davey ◽  
Emily M. Duncan ◽  
...  

AbstractDietary studies provide key insights into threats and changes within ecosystems and subsequent impacts on focal species. Diet is particularly challenging to study within marine environments and therefore is often poorly understood. Here, we examined the diet of stranded and bycaught loggerhead (Caretta caretta) and green turtles (Chelonia mydas) in North Cyprus (35.33° N, 33.47° E) between 2011 and 2019. A total of 129 taxa were recorded in the diet of loggerhead turtles (n = 45), which were predominantly carnivorous (on average 72.1% of dietary biomass), foraging on a large variety of invertebrates, macroalgae, seagrasses and bony fish in low frequencies. Despite this opportunistic foraging strategy, one species was particularly dominant, the sponge Chondrosia reniformis (21.5%). Consumption of this sponge decreased with increasing turtle size. A greater degree of herbivory was found in green turtles (n = 40) which predominantly consumed seagrasses and macroalgae (88.8%) with a total of 101 taxa recorded. The most dominant species was a Lessepsian invasive seagrass, Halophila stipulacea (31.1%). This is the highest percentage recorded for this species in green turtle diet in the Mediterranean thus far. With increasing turtle size, the percentage of seagrass consumed increased with a concomitant decrease in macroalgae. Seagrass was consumed year-round. Omnivory occurred in all green turtle size classes but reduced in larger turtles (> 75 cm CCL) suggesting a slow ontogenetic dietary shift. Macroplastic ingestion was more common in green (31.6% of individuals) than loggerhead turtles (5.7%). This study provides the most complete dietary list for marine turtles in the eastern Mediterranean.


Sign in / Sign up

Export Citation Format

Share Document