foraging site
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 17)

H-INDEX

23
(FIVE YEARS 2)

Ornis Fennica ◽  
2022 ◽  
Vol 98 (4) ◽  
pp. 182-141
Author(s):  
Martin Beal ◽  
Patrik Byholm ◽  
Ulrik Lötberg ◽  
Tom J. Evans ◽  
Kozue Shiomi ◽  
...  

Habitat preferences and foraging strategies affect population-level space use and are therefore crucial to understanding population change and implementing spatial conservation and management actions. We investigated the breeding season habitat preference and foraging site fidelity of the under-studied and threatened, Baltic Sea population of Caspian Terns (Hydroprogne caspia). Using GPS devices, we tracked 20 adult individuals at two breeding colonies, in Sweden and Finland, from late incubation through chick-rearing. Analyzing foraging movements during this period, we describe trip characteristics for each colony, daily metrics of effort, habitat use, and foraging site fidelity. We found that daily time spent away from the colony increased throughout the season, with colony-level differences in terms of distance travelled per day. In general, terns selected shallow waters between 0–5 meters in depth with certain individuals using inland lakes for foraging. We show, for the first time, that individual Caspian Terns are faithful to foraging sites throughout the breeding season, and that individuals are highly repeatable in their strategies regarding foraging site fidelity. These results fill important knowledge gaps for this at-risk population, and extend our general knowledge of the breeding season foraging ecology of this widespread species.


2021 ◽  
Author(s):  
◽  
Douglas Rands

<p><b>Foraging behaviour can have a major influence on the survival and reproduction of individuals which can ultimately impact the viability of a population. Foraging is particularly challenging for procellariiformes (tube nosed seabirds) who feed on patchily distributed prey in the highly dynamic marine environment. During the breeding season procellariiformes must also increase their foraging effort to raise their chick whilst having a reduced foraging range. As a result, procellariiformes have adopted various foraging strategies, such as dual foraging and sexual foraging dimorphism, to cope with this energy demanding lifestyle. Westland petrels (Procellaria westlandica) are an endangered winter breeding procellariform endemic to the West Coast of New Zealand’s South Island. Unlike other procellariiformes, previous studies have found little evidence of Westland petrels using sexually dimorphic or dual foraging strategies. Furthermore, Westland petrels also display a high level of individual variation in foraging behaviour. To understand why there is so much variation and what factors are driving it, I first examined variation at the population, individual and within individual level to describe and categorise different foraging strategies. I then investigated how factors such as year, sex and foraging site influenced variation. Finally, I examined how oceanic variables influenced habitat selection and foraging characteristics to understand how the environment drives variation in foraging behaviour.</b></p> <p>Considerable variation was found at all levels. Most of the variation was explained by year with individuals taking shorter foraging trips in 2011 and longer trips in 2015. Females foraged further than males suggesting that there is some degree of sexual foraging segregation occurring in Westland petrels. I also found that the highest variation in foraging behaviour was exhibited by individuals within their core foraging site on the West Coast. Sea surface temperatures were highest at the West Coast foraging site and individuals within this site showed differences in habitat selection among years. Habitat selection at the West Coast site also differed between sexes suggesting that males are outcompeting females for prime foraging spots.</p> <p>Overall, my results indicate that foraging conditions on the West Coast are highly variable likely due to rising sea surface temperatures, marine heatwaves, and the effects of the El Nino-Southern Oscillation. As a result, it is likely that prey availability on the West Coast is unpredictable causing high variation in foraging behaviour and sexual foraging segregation. With climate change, foraging conditions on the West Coast are predicted to get more unpredictable as sea surface temperatures continue to rise and extreme weather events become more frequent. These factors will make foraging increasingly difficult for Westland petrels and could see them rely more on fishery discards as a source of food, increasing their risk of incidental mortality. Conservation management should focus on protecting the petrels core foraging area around the Hokitika canyon to help limit the effects of climate change. Fishery management should also focus on limiting or prohibiting offal discards to prevent the incidental mortality of Westland petrels.</p>


2021 ◽  
Author(s):  
◽  
Douglas Rands

<p><b>Foraging behaviour can have a major influence on the survival and reproduction of individuals which can ultimately impact the viability of a population. Foraging is particularly challenging for procellariiformes (tube nosed seabirds) who feed on patchily distributed prey in the highly dynamic marine environment. During the breeding season procellariiformes must also increase their foraging effort to raise their chick whilst having a reduced foraging range. As a result, procellariiformes have adopted various foraging strategies, such as dual foraging and sexual foraging dimorphism, to cope with this energy demanding lifestyle. Westland petrels (Procellaria westlandica) are an endangered winter breeding procellariform endemic to the West Coast of New Zealand’s South Island. Unlike other procellariiformes, previous studies have found little evidence of Westland petrels using sexually dimorphic or dual foraging strategies. Furthermore, Westland petrels also display a high level of individual variation in foraging behaviour. To understand why there is so much variation and what factors are driving it, I first examined variation at the population, individual and within individual level to describe and categorise different foraging strategies. I then investigated how factors such as year, sex and foraging site influenced variation. Finally, I examined how oceanic variables influenced habitat selection and foraging characteristics to understand how the environment drives variation in foraging behaviour.</b></p> <p>Considerable variation was found at all levels. Most of the variation was explained by year with individuals taking shorter foraging trips in 2011 and longer trips in 2015. Females foraged further than males suggesting that there is some degree of sexual foraging segregation occurring in Westland petrels. I also found that the highest variation in foraging behaviour was exhibited by individuals within their core foraging site on the West Coast. Sea surface temperatures were highest at the West Coast foraging site and individuals within this site showed differences in habitat selection among years. Habitat selection at the West Coast site also differed between sexes suggesting that males are outcompeting females for prime foraging spots.</p> <p>Overall, my results indicate that foraging conditions on the West Coast are highly variable likely due to rising sea surface temperatures, marine heatwaves, and the effects of the El Nino-Southern Oscillation. As a result, it is likely that prey availability on the West Coast is unpredictable causing high variation in foraging behaviour and sexual foraging segregation. With climate change, foraging conditions on the West Coast are predicted to get more unpredictable as sea surface temperatures continue to rise and extreme weather events become more frequent. These factors will make foraging increasingly difficult for Westland petrels and could see them rely more on fishery discards as a source of food, increasing their risk of incidental mortality. Conservation management should focus on protecting the petrels core foraging area around the Hokitika canyon to help limit the effects of climate change. Fishery management should also focus on limiting or prohibiting offal discards to prevent the incidental mortality of Westland petrels.</p>


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Sang-Bin Lee ◽  
Thomas Chouvenc ◽  
Nan-Yao Su

Abstract Background Foraging in group living animals such as social insects, is collectively performed by individuals. However, our understanding on foraging behavior of subterranean termites is extremely limited, as the process of foraging in the field is mostly concealed. Because of this limitation, foraging behaviors of subterranean termites were indirectly investigated in the laboratory through tunnel geometry analysis and observations on tunneling behaviors. In this study, we tracked subsets of foraging workers from juvenile colonies of Coptotermes formosanus (2-yr-old) to describe general foraging behavioral sequences and to find how foraging workers allocate time between the foraging site (food acquisition or processing) and non-foraging site (food transportation). Results Once workers entered into the foraging site, they spent, on average, a significantly longer time at the foraging site than the non-foraging site. Our clustering analysis revealed two different types of foraging workers in the subterranean termite based on the duration of time they spent at the foraging site and their foraging frequency. After entering the foraging site, some workers (cluster 1) immediately initiated masticating wood fragments, which they transferred as food boluses to recipient workers at the foraging site. Conversely, the recipient workers (cluster 2) moved around after entering the foraging site and received food from donating workers. Conclusions This study provides evidence of task specialization within foraging cohorts in subterranean termites.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 837
Author(s):  
Tomasz Stański ◽  
Marzena Stańska ◽  
Artur Goławski ◽  
Dorota Czeszczewik

The distribution of the Middle Spotted Woodpecker (Leiopicus medius) is restricted to mature deciduous forests with large trees, mainly oaks (Quercus spp.). Intensive forest management resulted in the loss of many suitable habitats, thus resulting in a decline in the population of this species. This study aimed to identify the parameters of foraging sites in the breeding season (April to June) and in the non-breeding season (other months). The research was conducted in the primeval oak-lime-hornbeam forest of the Białowieża National Park, where foraging woodpeckers were observed and detailed parameters of foraging sites were recorded. During the breeding season woodpeckers foraged primarily on European hornbeams (Carpinus betulus L.), but in non-breeding season the use of this tree species decreased by a factor of two, whereas the use of Norway spruces (Picea abies Linnaeus) increased more than twice. The most preferred tree species as a foraging site in both seasons was pedunculate oak (Quercus robur Linnaeus). In the non-breeding season, woodpeckers foraged at sites located higher, and the foraging session was longer compared with the breeding season. In both seasons, woodpeckers preferred dead and large trees and prey gleaning from the tree surface was their dominant foraging technique. Our results confirmed the key role of oaks and large trees, but also revealed the importance of European hornbeams and Norway spruces as foraging sites for the Middle Spotted Woodpecker.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Wang ◽  
Lizhi Zhou ◽  
Rong Fu ◽  
Lei Cheng ◽  
Shaofei Yan ◽  
...  

Abstract Background The composition of intestinal microflora in animals is affected by cross-species transmission. In a nature reserve, the foraging sites of waterbirds are relatively fixed, but frequently close to residential areas and can also be visited by domestic fowls. It is easy to result in the trans-species-flock dispersal of gut microbes between the wild birds and domestic fowls. The effects of the variable foraging site distances on the gut microbe structures of the waterbirds and the sympatric domestic fowls are currently unclear, and further research is required to evaluate the impacts of geographic location on cross-infection. Methods Illumina high-throughput sequencing and bioinformatics analysis software were utilized to compare and analyze the composition of gut microbes from the fecal samples of Hooded Cranes (HC; Grus monacha) and two groups of Domestic Ducks (Anas platyrhynchos domesticus) that foraged at 1 km (ducks in near areas, D-N), and 4 km (ducks in far areas, D-F) away from the habitats of the Hooded Cranes at Shengjin Lake, China. Results The results showed that there were significant differences in the alpha-diversity of the gut bacteria in the HC, D-N, and D-F samples under the interspecific distance factor. The dominant bacterial phyla, Cyanobacteria and Proteobacteria, showed correlations with distance for each host. The D-N group had more diverse intestinal flora than the D-F, as they were physically closer to the HC and had more indirect contact and cross-transmission of their gut microbes. More potentially pathogenic bacterial sequences, and Operational Taxonomic Units (OTUs) were found in the D-N than in HC and D-F. Conclusions Hooded Cranes and the Domestic Duck populations at variable distances from the cranes showed significant differences in their intestinal bacteria and potentially pathogenic bacteria. The closer the foraging sites were, the easier the intestinal flora spread across species. The results provide a basis for determining the safe distance between wild birds and domestic fowls in a nature reserve.


2021 ◽  
Vol 25 (01) ◽  
pp. 59-68
Author(s):  
Danila Syriani Veluza ◽  
◽  
Juliana Rechetelo ◽  
Emygdio Leite de Araújo Monteiro-Filho ◽  
Luiz Augusto Macedo Mestre ◽  
...  

The foraging efficiency of birds may vary according to local conditions as a result of the balance between energy consumption and expenditure. The foraging efficiency of Egretta thula (adults n=11) and Egretta caerulea (adults n=69 and juveniles n= 17) was compared in Paranaguá city estuary, in Paraná, Brazil. In 14 hours of observation divided into 2 minutes sessions per individual, were recorded foraging site (mud or shallow water), number of steps, total peckings and successful peckings, and were calculated the success rates, energy effort and capture efficiency. In shallow water E.thula was more efficient than E. caerulea. There was no intraspecific differences in E. thula regarding environments. Adults of E. caerulea were more efficient than juveniles, with greater efficiency in mud than in shallow waters environments. Differences in foraging efficiency between species may be related to the type of foraging according to feeding location.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244298
Author(s):  
Candice Michelot ◽  
Akiko Kato ◽  
Thierry Raclot ◽  
Yan Ropert-Coudert

There is a growing interest in studying consistency and site fidelity of individuals to assess, respectively, how individual behaviour shapes the population response to environmental changes, and to highlight the critical habitats needed by species. In Antarctica, the foraging activity of central place foragers like Adélie penguins (Pygoscelis adeliae) is constrained by the sea-ice cover during the breeding season. We estimated the population-level repeatability in foraging trip parameters and sea-ice conditions encountered by birds across successive trips over several years, and we examined their foraging site fidelity linked to sea-ice concentrations throughout the chick-rearing season. Penguins’ foraging activity was repeatable despite varying annual sea-ice conditions. Birds’ site fidelity is constrained by both sea-ice conditions around the colony that limit movements and resources availability, and also behavioural repeatability of individuals driven by phenological constraints. Adélie penguins favoured sea-ice concentrations between 20–30%, as these facilitate access to open water while opening multiple patches for exploration in restricted areas in case of prey depletion. When the sea-ice concentration became greater than 30%, foraging site fidelity decreased and showed higher variability, while it increased again after 60%. Between two trips, the foraging site fidelity remained high when sea-ice concentration changed by ± 10% but showed greater variability when sea-ice concentrations differed on a larger range. In summary, Adélie penguins specialize their foraging behaviour during chick-rearing according to sea-ice conditions to enhance their reproductive success. The balance between being consistent under favourable environmental conditions vs. being flexible under more challenging conditions may be key to improving foraging efficiency and reproductive success to face fast environmental changes.


2021 ◽  
Vol 168 (1) ◽  
Author(s):  
Nicolas James Pilcher ◽  
Marina A. Antonopoulou ◽  
Clara Jimena Rodriguez-Zarate ◽  
Daniel Mateos-Molina ◽  
Himansu Sekhar Das ◽  
...  

AbstractAdult sea turtles migrate between foraging areas and nesting sites that may be 100 s–1000 s of km away. Little is known of the connectivity between these sites in the Arabian region for green sea turtles. We document linkages between two foraging areas in the United Arab Emirates (UAE) with key nesting sites and provide insights on effectiveness of marine protected areas for green sea turtles. Tracking 45 adult green sea turtles Chelonia mydas from foraging areas in the UAE, we show that the primary nesting destination for turtles foraging in Bu Tinah in the UAE is Ras al Hadd in Oman. The turtles use the waters of the UAE, Iran and Oman during breeding migrations and generally stay ~ 20 km off the coast, in waters 10–20 m deep except when crossing the Sea of Oman. Turtles display substantial fidelity to the original foraging sites, often traversing other known foraging sites when returning from the breeding migration. A small proportion of turtles also utilise more than one foraging site. Our data indicate that the Marawah Marine Biosphere Reserve in Abu Dhabi is broadly coincident with the foraging areas of turtles offering substantial protection from fishery activities and that the marine protected area in Ras Al Khaimah would be more effective in protecting green sea turtles if it extended offshore and along the coast. These data may contribute to targeted and effective national and international management and conservation initiatives in the Arabian region.


Sign in / Sign up

Export Citation Format

Share Document