scholarly journals NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data

2017 ◽  
Vol 199 (9) ◽  
pp. 3360-3368 ◽  
Author(s):  
Vanessa Jurtz ◽  
Sinu Paul ◽  
Massimo Andreatta ◽  
Paolo Marcatili ◽  
Bjoern Peters ◽  
...  
2007 ◽  
Vol 26 (1) ◽  
pp. 246-254 ◽  
Author(s):  
Chunyan Zhao ◽  
Haixia Zhang ◽  
Feng Luan ◽  
Ruisheng Zhang ◽  
Mancang Liu ◽  
...  

2021 ◽  
Author(s):  
Janine-Denise Kopicki ◽  
Ankur Saikia ◽  
Stephan Niebling ◽  
Christian G&uumlnther ◽  
Maria M. Garcia-Alai ◽  
...  

An essential element of adaptive immunity is the selective binding of peptide antigens by major histocompatibility complex (MHC) class I proteins and their presentation to cytotoxic T lymphocytes on the cell surface. Using native mass spectrometry, we here analyze the binding of peptides to an empty disulfide-stabilized HLA-A*02:01 molecule. This novel approach allows us to examine the binding properties of diverse peptides. The unique stability of our MHC class I even enables us to determine the binding affinity of complexes, which are suboptimally loaded with truncated or charge-reduced peptides. Notably, a unique erucamide adduct decouples affinity analysis from peptide identity alleviating issues usually attributed to clustering. We discovered that two anchor positions at the binding surface between MHC and peptide can be stabilized independently and further analyze the contribution of other peptidic amino acids on the binding. We propose this as an alternative, likely universally applicable method to artificial prediction tools to estimate the binding strength of peptides to MHC class I complexes quickly and efficiently. This newly described MHC class I-peptide binding affinity quantitation represents a much needed orthogonal, confirmatory approach to existing computational affinity predictions and has the potential to eliminate binding affinity biases and thus accelerate drug discovery in infectious diseases autoimmunity, vaccine design, and cancer immunotherapy.


2019 ◽  
Vol 20 (3) ◽  
pp. 170-176 ◽  
Author(s):  
Zhongyan Li ◽  
Qingqing Miao ◽  
Fugang Yan ◽  
Yang Meng ◽  
Peng Zhou

Background:Protein–peptide recognition plays an essential role in the orchestration and regulation of cell signaling networks, which is estimated to be responsible for up to 40% of biological interaction events in the human interactome and has recently been recognized as a new and attractive druggable target for drug development and disease intervention.Methods:We present a systematic review on the application of machine learning techniques in the quantitative modeling and prediction of protein–peptide binding affinity, particularly focusing on its implications for therapeutic peptide design. We also briefly introduce the physical quantities used to characterize protein–peptide affinity and attempt to extend the content of generalized machine learning methods.Results:Existing issues and future perspective on the statistical modeling and regression prediction of protein– peptide binding affinity are discussed.Conclusion:There is still a long way to go before establishment of general, reliable and efficient machine leaningbased protein–peptide affinity predictors.


Sign in / Sign up

Export Citation Format

Share Document