Combinatorial identities and trigonometric inequalities

2016 ◽  
pp. 1-15
Author(s):  
Horst Alzer ◽  
Man Kam Kwong ◽  
Hao Pan
2020 ◽  
Vol 17 (2) ◽  
pp. 256-277
Author(s):  
Ol'ga Veselovska ◽  
Veronika Dostoina

For the derivatives of Chebyshev second-kind polynomials of a complex vafiable, a system of functions biorthogonal with them on closed curves of the complex plane is constructed. Properties of these functions and the conditions of expansion of analytic functions in series in polynomials under consideration are established. The examples of such expansions are given. In addition, we obtain some combinatorial identities of independent interest.


2021 ◽  
Vol 19 (1) ◽  
pp. 284-296
Author(s):  
Hye Kyung Kim

Abstract Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α > 0 \alpha \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the n n th moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α > 0 \alpha \gt 0 and β > 0 \beta \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.


2021 ◽  
Vol 71 (2) ◽  
pp. 301-316
Author(s):  
Reshma Sanjhira

Abstract We propose a matrix analogue of a general inverse series relation with an objective to introduce the generalized Humbert matrix polynomial, Wilson matrix polynomial, and the Rach matrix polynomial together with their inverse series representations. The matrix polynomials of Kiney, Pincherle, Gegenbauer, Hahn, Meixner-Pollaczek etc. occur as the special cases. It is also shown that the general inverse matrix pair provides the extension to several inverse pairs due to John Riordan [An Introduction to Combinatorial Identities, Wiley, 1968].


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Hye Kyung Kim

AbstractNumerous mathematicians have studied ‘poly’ as one of the generalizations to special polynomials, such as Bernoulli, Euler, Cauchy, and Genocchi polynomials. In relation to this, in this paper, we introduce the degenerate poly-Bell polynomials emanating from the degenerate polyexponential functions which are called the poly-Bell polynomials when $\lambda \rightarrow 0$ λ → 0 . Specifically, we demonstrate that they are reduced to the degenerate Bell polynomials if $k = 1$ k = 1 . We also provide explicit representations and combinatorial identities for these polynomials, including Dobinski-like formulas, recurrence relationships, etc.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
GwangYeon Lee ◽  
Mustafa Asci

Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called(p,q)-Fibonacci polynomials. We obtain combinatorial identities and by using Riordan method we get factorizations of Pascal matrix involving(p,q)-Fibonacci polynomials.


1997 ◽  
Vol 20 (4) ◽  
pp. 759-768 ◽  
Author(s):  
A. K. Agarwal ◽  
R. Balasubrananian

In this paper we study thosen-color partitions of Agarwal and Andrews, 1987, in which each pair of parts has weighted difference equal to−2Results obtained in this paper for these partitions include several combinatorial identities, recurrence relations, generating functions, relationships with the divisor function and computer produced tables. By using these partitions an explicit expression for the sum of the divisors of odd integers is given. It is shown how these partitions arise in the study of conjugate and self-conjugaten-color partitions. A combinatorial identity for self-conjugaten-color partitions is also obtained. We conclude by posing several open problems in the last section.


Sign in / Sign up

Export Citation Format

Share Document