scholarly journals Stability in totally nonlinear neutral differential equations with variable delay using fixed point theory

2015 ◽  
Vol 34 (1) ◽  
pp. 25-44
Author(s):  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi
Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

AbstractIn this article we present the existence and uniqueness results for fractional integro-differential equations with ψ-Hilfer fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Mönch fixed point theorem and the Banach fixed point theorem. Furthermore, we discuss Eα -Ulam-Hyers stability of the presented problem. Also, we use the generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of the δ-approximate solution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
O. Zentar ◽  
M. Ziane ◽  
S. Khelifa

Abstract The purpose of this work is to investigate the existence of solutions for a system of random differential equations involving the Riemann–Liouville fractional derivative. The existence result is established by means of a random abstract formulation to Sadovskii’s fixed point theorem principle [A. Baliki, J. J. Nieto, A. Ouahab and M. L. Sinacer, Random semilinear system of differential equations with impulses, Fixed Point Theory Appl. 2017 2017, Paper No. 27] combined with a technique based on vector-valued metrics and convergent to zero matrices. An example is also provided to illustrate our result.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 672 ◽  
Author(s):  
Mouffak Benchohra ◽  
Soufyane Bouriah ◽  
Juan J. Nieto

We present in this work the existence results and uniqueness of solutions for a class of boundary value problems of terminal type for fractional differential equations with the Hilfer–Katugampola fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Banach contraction principle and Krasnoselskii’s fixed point theorem. We illustrate our main findings, with a particular case example included to show the applicability of our outcomes.


2000 ◽  
Vol 61 (3) ◽  
pp. 439-449 ◽  
Author(s):  
Donal O'Regan

A variety of fixed point results are presented for weakly sequentially upper semicontinuous maps. In addition an existence result is established for differential equations in Banach spaces relative to the weak topology.


Fractals ◽  
2021 ◽  
pp. 2240002
Author(s):  
BASHIR AHMAD ◽  
BADRAH ALGHAMDI ◽  
RAVI P. AGARWAL ◽  
AHMED ALSAEDI

In this paper, we investigate the existence and uniqueness of solutions for Riemann–Liouville fractional integro-differential equations equipped with fractional nonlocal multi-point and strip boundary conditions in the weighted space. The methods of our study include the well-known tools of the fixed point theory, which are commonly applied to establish the existence theory for the initial and boundary value problems after converting them into the fixed point problems. We also discuss the case when the nonlinearity depends on the Riemann–Liouville fractional integrals of the unknown function. Numerical examples illustrating the main results are presented.


2020 ◽  
Vol 61 ◽  
pp. C15-C30
Author(s):  
Charles P Stinson ◽  
Saleh S Almuthaybiri ◽  
Christopher C Tisdell

The purpose of this work is to advance the current state of mathematical knowledge regarding fixed point theorems of functions. Such ideas have historically enjoyed many applications, for example, to the qualitative and quantitative understanding of differential, difference and integral equations. Herein, we extend an established result due to Rus [Studia Univ. Babes-Bolyai Math., 22, 1977, 40–42] that involves two metrics to ensure wider classes of functions admit a unique fixed point. In contrast to the literature, a key strategy herein involves placing assumptions on the iterations of the function under consideration, rather than on the function itself. In taking this approach we form new advances in fixed point theory under two metrics and establish interesting connections between previously distinct theorems, including those of Rus [Studia Univ. Babes-Bolyai Math., 22, 1977, 40–42], Caccioppoli [Rend. Acad. Naz. Linzei. 11, 1930, 31–49] and Bryant [Am. Math. Month. 75, 1968, 399–400]. Our results make progress towards a fuller theory of fixed points of functions under two metrics. Our work lays the foundations for others to potentially explore applications of our new results to form existence and uniqueness of solutions to boundary value problems, integral equations and initial value problems. References Almuthaybiri, S. S. and C. C. Tisdell. ``Global existence theory for fractional differential equations: New advances via continuation methods for contractive maps''. Analysis, 39(4):117–128, 2019. doi:10.1515/anly-2019-0027 Almuthaybiri, S. S. and C. C. Tisdell. ``Sharper existence and uniqueness results for solutions to third-order boundary value problems, mathematical modelling and analysis''. Math. Model. Anal. 25(3):409–420, 2020. doi:10.3846/mma.2020.11043 Banach, S. ``Sur les operations dans les ensembles abstraits et leur application aux equations integrales''. Fund. Math., 3:133–181 1922. doi:10.4064/fm-3-1-133-181 Brouwer, L. E. J. ``Ueber Abbildungen von Mannigfaltigkeiten''. Math. Ann. 71:598, 1912. doi:10.1007/BF01456812 Bryant, V. W. ``A remark on a fixed point theorem for iterated mappings'' Am. Math. Month. 75: 399–400, 1968. doi:10.2307/2313440 Caccioppoli, R. ``Un teorema generale sullesistenza de elemente uniti in una transformazione funzionale''. Rend. Acad. Naz. Linzei. 11:31–49, 1930. Goebel, K., and W. A. Kirk. Topics in metric fixed point theory. Cambridge University Press, 1990, doi:10.1017/CBO9780511526152 Leray, J., and J. Schauder. ``Topologie et equations fonctionnelles''. Ann. Sci. Ecole Norm. Sup. 51:45–78, 1934. doi:10.24033/asens.836 O'Regan, D. and R. Precup. Theorems of Leray–Schauder type and applications, Series in Mathematical Analysis and Applications, Vol. 3. CRC Press, London, 2002. doi:10.1201/9781420022209 Rus, I. A. ``On a fixed point theorem of Maia''. Studia Univ. Babes-Bolyai Math. 22:40–42, 1977. Schaefer, H. H. ``Ueber die Methode der a priori-Schranken''. Math. Ann. 129:415–416, 1955. doi:10.1007/bf01362380 Tisdell, C. C. ``When do fractional differential equations have solutions that are bounded by the Mittag-Leffler function?'' Fract. Calc. Appl. Anal. 18(3):642–650, 2015. doi:10.1515/fca-2015-0039 Tisdell, C. C. ``A note on improved contraction methods for discrete boundary value problems.'' J. Diff. Eq. Appl. 18(10):1773–1777, 2012. doi:10.1080/10236198.2012.681781 Tisdell, C. C. ``On the application of sequential and fixed-point methods to fractional differential equations of arbitrary order.'' J. Int. Eq. Appl. 24(2):283–319, 2012. doi:10.1216/JIE-2012-24-2-283 Ehrnstrom, M., Tisdell, C. C. and E. Wahlen. ``Asymptotic integration of second-order nonlinear difference equations.'' Glasg. Math. J. 53(2):223–243, 2011. doi:10.1017/S0017089510000650 Erbe, L., A. Peterson and C. C. Tisdell. ``Basic existence, uniqueness and approximation results for positive solutions to nonlinear dynamic equations on time scales.'' Nonlin. Anal. 69(7):2303–2317, 2008. doi:10.1016/j.na.2007.08.010 Tisdell, C. C. and A. Zaidi. ``Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling.'' Nonlin. Anal. 68(11):3504–3524, 2008. doi:10.1016/j.na.2007.03.043 Tisdell, C. C. ``Improved pedagogy for linear differential equations by reconsidering how we measure the size of solutions.'' Int.. J. Math. Ed. Sci. Tech. 48(7):1087–1095, 2017. doi:10.1080/0020739X.2017.1298856 Tisdell, C. C. ``On Picard's iteration method to solve differential equations and a pedagogical space for otherness.'' Int. J. Math. Ed. Sci. Tech. 50(5):788–799, 2019. doi:10.1080/0020739X.2018.1507051 Zeidler, E. Nonlinear functional analysis and its applications. Springer-Verlag, New York, 1986. doi:10.1007/978-1-4612-4838-5


2021 ◽  
Vol 6 (11) ◽  
pp. 12894-12901
Author(s):  
El-sayed El-hady ◽  
◽  
Abdellatif Ben Makhlouf

<abstract><p>We present Ulam-Hyers-Rassias (UHR) stability results for the Darboux problem of partial differential equations (DPPDEs). We employ some fixed point theorem (FPT) as the main tool in the analysis. In this manner, our results are considered as some generalized version of several earlier outcomes.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document