scholarly journals Hind Limb Sensory Innervation in Rats: Comparison between Sural and Saphenous Nerve Morphometry

2015 ◽  
Vol 33 (2) ◽  
pp. 743-750 ◽  
Author(s):  
Letícia Oliveira Neri ◽  
Milena Menezes de Amorim ◽  
Stella Andrade Rodrigues Campos ◽  
Luciana Sayuri Sanada ◽  
Valéria Paula Sassoli Fazan
2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Stella Andrade Rodrigues Campos ◽  
Letícia Oliveira Neri ◽  
Luciana Sayuri Sanada ◽  
Valéria Paula Sassoli Fazan

Author(s):  
Tony M. Mosconi ◽  
Min J. Song ◽  
Frank L. Rice

Whiskers or vibrissal follicle-sinus complexes (F-SCs) on the snouts of many mammalian species are structures that have complex, dense sensory innervation. The innervation of F-SCs is remarkably similar in all species with the exception of one site - the inner conical body (ICB). The ICB is an elongated cylindrical structure that encircles the hair shaft near the neck of the follicle. This site has received only cursory attention in ultrastructural studies of the F-SCAdult rats were perfused after the method of Renehan and Munger2. F-SCs were quartered longitudinally and embedded separately in Epon-Araldite. Serial 0.25 μm sections were cut in either the longitudinal or perpendicular plane through the ICB and examined with an AEI EM7 1.2 MV HVEM (Albany, NY) at 1000 KV. Sensory endings were reconstructed from serial micrographs through at least 20 μm in the longitudinal plane and through 10 μm in the perpendicular plane.From two to six small superficial vibrissal nerves converge upon the neck of the F-SC and descend into the ICB. The nerves branch into smaller bundles of myelinated and unmyelinated axons along the dorsal side of the hair shaft.


1977 ◽  
Vol 38 (04) ◽  
pp. 0850-0862 ◽  
Author(s):  
Robert G. Schaub ◽  
Ronald Sande ◽  
Kenneth M. Meyers

SummaryPermanent ligation of the feline aorta at the iliac bifurcation is followed by rapid opening of pre-existing collateral blood vessels. However, if ligation is combined with formation of a clot, these protective collateral vessels do not function. This study was undertaken to determine if drugs which alter serotonin function can improve collateral blood flow after arterial thrombosis. Permanent ligations were placed at the iliac bifurcation, circumflex iliac and sixth lumbar arteries in all cats. A clot was produced in the aorta of 27 cats by injection of 0.1 ml of thromboplastin. Ligated clot-occluded cats were untreated (10); had blood serotonin depleted using a single dose of reserpine (0.1 mg/kg i. m.) followed by para-chlorophenylanine (p-CPA) (100 mg/kg orally) every 3 days (9) ; or were treated prior to surgery with a serotonin antagonist cinanserin HC1 (4 mg/kg i. v.) (8). Control cats (18) were acutely ligated. 9 of these cats were untreated, 5 were cinanserin HC1-treated, and 4 were reserpine/p-CPA-treated. Extent of collateral development was assessed by aortograms 3 days after occlusion and by neurologic rating. Aortograms of acutely ligated cats indicated a significant collateral blood flow around the segment of ligated aorta, while ligated clot-occluded cats had a severely depressed hind-limb perfusion. Reserpine/p-CPA-treated ligation clot-occluded cats had aortograms similar to acutely ligated cats. The cinanserin HC1-treated ligation clot-occluded cats had aortograms which indicated hind-limb perfusion was not as adequate as the acutely ligated cats. However, the perfusion of these animals was improved over untreated ligation clot-occluded cats. Neurologic rating correlated with aortograms. These results suggest: 1) the clinical consequences of arterial thrombosis cannot be entirely attributed to mechanical occlusion of an artery, but may be due to depression of protective collateral blood flow induced by thrombosis, 2) serotonin is an important factor in this depression of collateral blood flow, and 3) isolation of the factors responsible for collateral inhibition could permit the development of therapeutic interventions.


2018 ◽  
Vol 52 (1-4) ◽  
pp. 1-9 ◽  
Author(s):  
MT Hussan ◽  
MS Islam ◽  
J Alam

The present study was carried out to determine the morphological structure and the branches of the lumbosacral plexus in the indigenous duck (Anas platyrhynchos domesticus). Six mature indigenous ducks were used in this study. After administering an anesthetic to the birds, the body cavities were opened. The nerves of the lumbosacral plexus were dissected separately and photographed. The lumbosacral plexus consisted of lumbar and sacral plexus innervated to the hind limb. The lumbar plexus was formed by the union of three roots of spinal nerves that included last two and first sacral spinal nerve. Among three roots, second (middle) root was the highest in diameter and the last root was least in diameter. We noticed five branches of the lumbar plexus which included obturator, cutaneous femoral, saphenus, cranial coxal, and the femoral nerve. The six roots of spinal nerves, which contributed to form three trunks, formed the sacral plexus of duck. The three trunks united medial to the acetabular foramen and formed a compact, cylindrical bundle, the ischiatic nerve. The principal branches of the sacral plexus were the tibial and fibular nerves that together made up the ischiatic nerve. Other branches were the caudal coxal nerve, the caudal femoral cutaneous nerve and the muscular branches. This study was the first work on the lumbosacral plexus of duck and its results may serve as a basis for further investigation on this subject.


2018 ◽  
Author(s):  
Hye Jin Kim ◽  
Dong Ho Jung ◽  
Hyun Yang ◽  
Byung Seob Ko
Keyword(s):  

Diabetes ◽  
1993 ◽  
Vol 42 (6) ◽  
pp. 814-819 ◽  
Author(s):  
L. C. Russell ◽  
K. J. Burchiel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document