innervation patterns
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 33)

H-INDEX

31
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Aalap Verma ◽  
Alexandra Manchel ◽  
Rahul Narayanan ◽  
Jan B. Hoek ◽  
Babatunde A. Ogunnaike ◽  
...  

Rapid breakdown of hepatic glycogen stores into glucose plays an important role during intense physical exercise to maintain systemic euglycemia. Hepatic glycogenolysis is governed by several different liver-intrinsic and systemic factors such as hepatic zonation, circulating catecholamines, hepatocellular calcium signaling, hepatic neuroanatomy, and the central nervous system (CNS). Of the factors regulating hepatic glycogenolysis, the extent of lobular innervation varies significantly between humans and rodents. While rodents display very few autonomic nerve terminals in the liver, nearly every hepatic layer in the human liver receives neural input. In the present study, we developed a multi-scale, multi-organ model of hepatic metabolism incorporating liver zonation, lobular scale calcium signaling, hepatic innervation, and direct and peripheral organ-mediated communication between the liver and the CNS. We evaluated the effect of each of these governing factors on the total hepatic glucose output and zonal glycogenolytic patterns within liver lobules during simulated physical exercise. Our simulations revealed that direct neuronal stimulation of the liver and an increase in circulating catecholamines increases hepatic glucose output mediated by mobilization of intracellular calcium stores and lobular scale calcium waves. Comparing simulated glycogenolysis between human-like and rodent-like hepatic innervation patterns (extensive vs. minimal) suggested that propagation of calcium transients across liver lobules acts as a compensatory mechanism to improve hepatic glucose output in sparsely innervated livers. Interestingly, our simulations suggested that catecholamine-driven glycogenolysis is reduced under portal hypertension. However, increased innervation coupled with strong intercellular communication can improve the total hepatic glucose output under portal hypertension. In summary, our modeling and simulation study reveals a complex interplay of intercellular and multi-organ interactions that can lead to differing calcium dynamics and spatial distributions of glycogenolysis at the lobular scale in the liver.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yukio Ago ◽  
Satoshi Asano ◽  
Hitoshi Hashimoto ◽  
James A. Waschek

Pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) is a multifunctional neuropeptide involved in brain development and synaptic plasticity. With respect to PACAP function, most attention has been given to that mediated by its specific receptor PAC1 (ADCYAP1R1). However, PACAP also binds tightly to the high affinity receptors for vasoactive intestinal peptide (VIP, VIP), called VPAC1 and VPAC2 (VIPR1 and VIPR2, respectively). Depending on innervation patterns, PACAP can thus interact physiologically with any of these receptors. VPAC2 receptors, the focus of this review, are known to have a pivotal role in regulating circadian rhythms and to affect multiple other processes in the brain, including those involved in fear cognition. Accumulating evidence in human genetics indicates that microduplications at 7q36.3, containing VIPR2 gene, are linked to schizophrenia and possibly autism spectrum disorder. Although detailed molecular mechanisms have not been fully elucidated, recent studies in animal models suggest that overactivation of the VPAC2 receptor disrupts cortical circuit maturation. The VIPR2 linkage can thus be potentially explained by inappropriate control of receptor signaling at a time when neural circuits involved in cognition and social behavior are being established. Alternatively, or in addition, VPAC2 receptor overactivity may disrupt ongoing synaptic plasticity during processes of learning and memory. Finally, in vitro data indicate that PACAP and VIP have differential activities on the maturation of neurons via their distinct signaling pathways. Thus perturbations in the balance of VPAC2, VPAC1, and PAC1 receptors and their ligands may have important consequences in brain development and plasticity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Chang Yin ◽  
Eric Peterman ◽  
Jeffrey P. Rasmussen ◽  
Jay Z. Parrish

Somatosensory neurons (SSNs) densely innervate our largest organ, the skin, and shape our experience of the world, mediating responses to sensory stimuli including touch, pressure, and temperature. Historically, epidermal contributions to somatosensation, including roles in shaping innervation patterns and responses to sensory stimuli, have been understudied. However, recent work demonstrates that epidermal signals dictate patterns of SSN skin innervation through a variety of mechanisms including targeting afferents to the epidermis, providing instructive cues for branching morphogenesis, growth control and structural stability of neurites, and facilitating neurite-neurite interactions. Here, we focus onstudies conducted in worms (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and zebrafish (Danio rerio): prominent model systems in which anatomical and genetic analyses have defined fundamental principles by which epidermal cells govern SSN development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haohao Wu ◽  
Charles Petitpré ◽  
Paula Fontanet ◽  
Anil Sharma ◽  
Carmelo Bellardita ◽  
...  

AbstractProprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice.


2021 ◽  
Vol 64 (2) ◽  
pp. 77-84
Author(s):  
Bhagath Kumar Potu ◽  
M. V. Ravishankar

Background: Contrary to the classic anatomical description, many recent studies have reported wide variations in branching patterns and location of motor branches that are supplying the pronator teres muscle. To understand these variations and their implications in surgical procedures of the nerve transfers, a systematic review was performed on the innervation of pronator teres muscle from cadaveric studies.Methods: A systematic literature search was performed in databases such as Medline, PubMed, Google Scholar, SciELO, ScienceDirect, Cochrane reviews and orthopedics textbooks using the search terms “pronator teres nerve branches”; AND “number” OR “location” OR “length” OR “diameter” yielded 545 article links. Articles were evaluated according to PRISMA guidelines. Results: A total of twenty cadaveric studies including 648 branches have registered 52.9% of two branch innervation pattern followed by 31.3%-single branch pattern; 13.5%-three branch pattern; 1.7%-four branch pattern, and 0.4%-five branch patterns, respectively. Of the 403 branches studied for their location in relation with the humeral intercondylar line, most branches were located distal to the line (50.3%), followed by 32.7% (proximal to it) and 16.8% at the line, respectively. The distance of branches located proximal and distal to humeral intercondylar line was in the range of 1.25–10 cm, and 1.1–7.5 cm, respectively. The mean length and diameter of nerves reported were 4.37 ± 2.43 cm, and 1.5 mm, respectively. Conclusions: Our data defined the morphometrics of nerve branches and they often met the required diameter for neurotization procedures. Our findings also demonstrated that the morphometrics, branching pattern and their location vary between populations and this information is very vital for surgeons during the nerve transfers.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kathryn C Allaway ◽  
William Muñoz ◽  
Robin Tremblay ◽  
Mia Sherer ◽  
Jacob Herron ◽  
...  

The basal forebrain cholinergic system projects broadly throughout the cortex and constitutes a critical source of neuromodulation for arousal and attention. Traditionally, this system was thought to function diffusely. However, recent studies have revealed a high degree of spatiotemporal specificity in cholinergic signaling. How the organization of cholinergic afferents confers this level of precision remains unknown. Here, using intersectional genetic fate mapping, we demonstrate that cholinergic fibers within the mouse cortex exhibit remarkable laminar and regional specificity and that this is organized in accordance with cellular birthdate. Strikingly, birthdated cholinergic projections within the cortex follow an inside-out pattern of innervation. While early born cholinergic populations target deep layers, late born ones innervate superficial laminae. We also find that birthdate predicts cholinergic innervation patterns within the amygdala, hippocampus, and prefrontal cortex. Our work reveals previously unappreciated specificity within the cholinergic system and the developmental logic by which these circuits are assembled.


Hand ◽  
2020 ◽  
pp. 155894472096388
Author(s):  
Michele R. Colonna ◽  
Maria Piagkou ◽  
Andrea Monticelli ◽  
Cesare Tiengo ◽  
Franco Bassetto ◽  
...  

Background Lumbrical muscles originate in the palm from the 4 tendons of the flexor digitorum profundus and course distally along the radial side of the corresponding metacarpophalangeal joints, in front of the deep transverse metacarpal ligament. The first and second lumbrical muscles are typically innervated by the median nerve, and third and fourth by the ulnar nerve. A plethora of lumbrical muscle variants has been described, ranging from muscles’ absence to reduction in their number or presence of accessory slips. The current cadaveric study highlights typical and variable neural supply of lumbrical muscles. Materials Eight (3 right and 5 left) fresh frozen cadaveric hands of 3 males and 5 females of unknown age were dissected. From the palmar wrist crease, the median and ulnar nerve followed distally to their terminal branches. The ulnar nerve deep branch was dissected and lumbrical muscle innervation patterns were noted. Results The frequency of typical innervations of lumbrical muscles is confirmed. The second lumbrical nerve had a double composition from both the median and ulnar nerves, in 12.5% of the hands. The thickest branch (1.38 mm) originated from the ulnar nerve and supplied the third lumbrical muscle, and the thinnest one (0.67 mm) from the ulnar nerve and supplied the fourth lumbrical muscle. In 54.5%, lumbrical nerve bifurcation was identified. Conclusion The complex innervation pattern and the peculiar anatomy of branching to different thirds of the muscle bellies are pointed out. These findings are important in dealing with complex and deep injuries in the palmar region, including transmetacarpal amputations.


Author(s):  
Kristina Loy ◽  
Julie Fourneau ◽  
Ning Meng ◽  
Carmen Denecke ◽  
Giuseppe Locatelli ◽  
...  

Abstract Descending serotonergic (5-HT) projections originating from the raphe nuclei form an important input to the spinal cord that control basic locomotion. The molecular signals that control this projection pattern are currently unknown. Here, we identify Semaphorin7A (Sema7A) as a critical cue that restricts serotonergic innervation in the spinal cord. Sema7A deficient mice show a marked increase in serotonergic fiber density in all layers of the spinal cord while the density of neurons expressing the corresponding 5-HTR2α receptor remains unchanged. These alterations appear to be successfully compensated as no obvious changes in rhythmic locomotion and skilled stepping are observed in adult mice. When the system is challenged with a spinal lesion, serotonergic innervation patterns in both Sema7A-deficient and -competent mice evolve over time with excessive innervation becoming most pronounced in the dorsal horn of Sema7A-deficient mice. These altered serotonergic innervation patterns correlate with diminished functional recovery that predominantly affects rhythmic locomotion. Our findings identify Sema7A as a critical regulator of serotonergic circuit formation in the injured spinal cord.


2020 ◽  
Author(s):  
Kathryn C. Allaway ◽  
William Muñoz ◽  
Robin Tremblay ◽  
Mia Sherer ◽  
Jacob Herron ◽  
...  

AbstractThe basal forebrain cholinergic system projects broadly throughout the cortex and constitutes a critical source of neuromodulation for arousal and attention. Traditionally, this system was thought to function diffusely. However, recent studies have revealed a high degree of spatiotemporal specificity in cholinergic signaling. How the organization of cholinergic afferents confers this level of precision remains unknown. Here, using intersectional genetic fate mapping, we demonstrate that cholinergic fibers within the cortex exhibit remarkable laminar and regional specificity and that this is organized in accordance with cellular birthdate. Strikingly, birthdated cholinergic projections within the cortex follow an inside-out pattern of innervation. While early born cholinergic populations target deep layers, late born ones innervate superficial laminae. We also find that birthdate predicts cholinergic innervation patterns within the amygdala, hippocampus, and prefrontal cortex. Our work reveals previously unappreciated specificity within the cholinergic system and the developmental logic by which these circuits are assembled.


Sign in / Sign up

Export Citation Format

Share Document